Vol. 107
Latest Volume
All Volumes
PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2020-11-11
A Novel Synthesis Method of Sparse Nonuniform-Amplitude Concentric Ring Arrays for Microwave Power Transmission
By
Progress In Electromagnetics Research C, Vol. 107, 1-15, 2021
Abstract
A novel two-step synthesis method of sparse nonuniform-amplitude concentric ring arrays (SNACRAs) to maximize the beam collection efficiency (BCE) for microwave power transmission (MPT) is proposed in this paper. In the first step, beetle antennae search (BAS) algorithm is used to optimize the radius of each ring of the SNACRA, to obtain the maximum BCE and the equivalent continuous excitation of each ring. In the second step, we find the least array element on each ring to discretize the continuous excitation on each ring by using the binary search (BS) algorithm directly under the restriction conditions and then find the excitation of each element. Through the above two steps of optimization, the optimal synthesized parameters of the SNACRA, including the maximum BCE, layout, excitation and power pattern, can be obtained highly efficiently. Many representative numerical results under different ring numbers, apertures, and receiving areas are presented. Comparing these numerical results with those of other three arrays for MPT, it is proved that the SNACRA synthesized by the two-step method can get higher BCE with less elements and have a relatively simple feed network.
Citation
Jianxiong Li, Junwen Pan, and Xianguo Li, "A Novel Synthesis Method of Sparse Nonuniform-Amplitude Concentric Ring Arrays for Microwave Power Transmission," Progress In Electromagnetics Research C, Vol. 107, 1-15, 2021.
doi:10.2528/PIERC20091808
References

1. Upasani, D. E., S. B. Shrote, and V. P. Wani, "Wireless electrical power transmission," Int. J. Comput. Appl., Vol. 1, No. 18, 6-10, 2010.

2. Li, X., J. Zhou, B. Y. Duan, et al. "Performance of planar arrays for microwave power transmission with position errors," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1794-1797, 2015.

3. Hui, Q., K. Jin, and X. Zhu, "Directional radiation technique for maximum receiving power in microwave power transmission system," IEEE Transactions on Industrial Electronics, Vol. 67, No. 8, 6376-6386, 2020.

4. Xia, M. and S. Aissa, "On the efficiency of far-field wireless power transfer," IEEE Transactions on Signal Processing, Vol. 63, No. 11, 2835-2847, 2015.

5. Shinohara, N., "Power without wires," IEEE Microw. Mag., Vol. 12, No. 7, 64-73, 2011.

6. Gavan, J. and S. Tapuch, "Microwave wireless-power transmission to high-altitude-platform systems," Radio Sci. Bull., Vol. 83, No. 3, 25-42, 2017.

7. Sasaki, S., K. Tanaka, and K. I. Maki, "Microwave power transmission technologies for solar power satellites," Proc. IEEE, Vol. 101, No. 6, 1438-1447, 2013.

8. Li, X., K. M. Luk, and B. Duan, "Multiobjective optimal antenna synthesis for microwave wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 4, 2739-2744, 2019.

9. Safar, M. A. and A. S. Al-Zayed, "A novel three-dimensional beamforming antenna array for wireless power focusing," Mathematical Problems in Engineering, 1-8, 2016.

10. Oliveri, G., P. Rocca, F. Viani, F. Robol, and A. Massa, "Latest advances and innovative solutions in antenna array synthesis for microwave wireless power transmission," 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 71-73, Kyoto, 2012.

11. Massa, A., G. Oliveri, F. Wani, et al. "Array designs for long-distance wireless power transmission: State-of-the-art and innovative solutions," Proc. IEEE, Vol. 101, No. 6, 146-1481, 2013.

12. Oliveri, G., L. Poli, and A. Massa, "Maximum efficiency beam synthesis of radiating planar arrays for wireless power transmission," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 5, 2490-2499, 2013.

13. Takahashi, T., T. Mizuno, M. Sawa, et al. "Development of phased array for high accurate microwave power transmission," Proc. IEEE Int. Microw. Workshop Ser. Innovative Wireless Power Transm., Technol. Syst. Appl., 157-160, Kyoto, Japan, May 2011.

14. Li, X., B. Duan, L. Zhou, et al. "Planar array synthesis for optimal microwave power transmission with multiple constraints," IEEE Antennas Wireless Propag. Lett., Vol. 16, No. 5, 70-73, 2017.

15. Zhou, H. W., X. X. Yang, and S. Rahim, "Synthesis of the sparse uniform-amplitude concentric ring transmitting array for optimal microwave power transmission," Int. J. Antennas and Propagation, Vol. 2018, 1-8, 2018.

16. Rocca, P., G. Oliveri, and A. Massa, "Innovative array designs for wireless power transmission," Proc. IEEE Int. Microw. Workshop Ser. Innovative Wireless Power Transm., Technol. Syst. Appl., 279-282, Kyoto, Japan, May 2011.

17. Xiangyuan, J. and L. Shuai, "BAS: Beetle antennae search algorithm for optimization problems," International Journal of Robotics and Control, Vol. 1, No. 1, 1-5, 2018.

18. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Chapter 6, John Wiley & Sons, 2005.

19. Guo, Q., C. Chen, and Y. Jiang, "An effective approach for the synthesis of uniform amplitude concentric ring arrays," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2558-2561, 2017.

20. Zheng, Z., Y. Yan, L. Zhang, et al. "Research on genetic algorithm of antenna arrays beam shaping with side lobe suppression," Journal of Electronics and Information Technology, Vol. 39, No. 3, 690-696, 2017.