Vol. 100
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-29
Dual-Mode Dual-Band Bandpass Filter with High Cutoff Rejection by Using Asymmetrical Transmission Zeros Technique
By
Progress In Electromagnetics Research M, Vol. 100, 225-236, 2021
Abstract
A dual-mode dual-band bandpass filter with high cutoff rejection using asymmetrical transmission zeros technique is presented here. Two dual-mode filters are combined to form a dual-band filter by sharing the input and output coupled-feed line, which is more flexibility-designed and maintains a small circuit size. Controllable asymmetrical transmission zeros (TZs) at lower- and upper-sideband locations of dual-band filters are designed to achieve the high-selectivity dual-mode dual-band bandpass filter. Unwanted signals are suppressed by the places of the TZs between the first and second passband, which give much-improved signal selectivity for the dual-band bandpass filter. The two passbands are centered at 1.8 and 2.4 GHz, respectively. The first and second passbands' insertion losses are only 0.9 dB and 1.1 dB, and the measured return losses are better than 20 dB. Three transmission zeros are located between both passbands, which achieve the rejection levels about 40 dB attenuations from 1.9 to 2.3 GHz.
Citation
Jessada Konpang, and Natchayathorn Wattikornsirikul, "Dual-Mode Dual-Band Bandpass Filter with High Cutoff Rejection by Using Asymmetrical Transmission Zeros Technique," Progress In Electromagnetics Research M, Vol. 100, 225-236, 2021.
doi:10.2528/PIERM20102302
References

1. Pozar, D. M., Microwave Engineering, 2nd Ed., Ch. 8, Wiley, New York, 1998.

2. Tsai, L. C. and C. W. Hsue, "Dual-band bandpass filters using equallength coupled-serial-shunted lines and Z-transform technique," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 4, 1111-1117, Apr. 2004.
doi:10.1109/TMTT.2004.825680

3. Chang, S. F., Y. H. Jeng, and J. L. Chen, "Dual-band step-impedance bandpass filter for multimode wireless LANs," Electron. Lett., Vol. 40, No. 1, 38-39, 2004.
doi:10.1049/el:20040065

4. Chang, S. F., J. L. Chen, and S. C. Chang, "New dual-band bandpass filters with step-impedance resonators comb and hairpin structures," Proc. Asia Pacific Microw. Conf., 793-796, 2003.

5. Lee, H. M., C. R. Chen, C. C. Tsai, and C. M. Tsai, "Dual-band coupling and feed structure for microstrip filter design," IEEE MTT-S Int. Dig., 1971-1974, 2004.

6. Kuo, J. T. and H. S. Cheng, "Design of quasi elliptic function filters with a dual-passband response," IEEE Microw. Wireless Compon. Lett., Vol. 14, No. 10, 472-474, Oct. 2004.
doi:10.1109/LMWC.2004.834560

7. Sun, S. and L. Zhu, "Coupling dispersion of parallel-coupled microstrip lines for dual-band filters with controllable fractional pass bandwidths," IEEE MTT-S Int. Dig., 2195-2198, Jun. 2005.

8. Cho, Y.-H., X.-G. Wang, and S.-W. Yun, "Design of dual-band interdigital bandpass filters using both series and shunt resonators," IEEE Microw. Wireless Compon. Lett., Vol. 22, No. 3, 111-113, Mar. 2012.
doi:10.1109/LMWC.2012.2185839

9. Chen, F., K. Song, B. Hu, and Y. Fan, "Compact dual-band bandpass filter using HMSIW resonator and slot perturbation," IEEE Microw. Wireless Compon. Lett., Vol. 24, No. 10, 686-688, Oct. 2014.
doi:10.1109/LMWC.2014.2342883

10. Zhu, H. and A. Abbosh, "A compact reconfigurable microstrip dual band filter using varactor-tuned stub-loaded stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 9, 675-677, Sep. 2016.
doi:10.1109/LMWC.2016.2597180

11. Chen, C.-F., T.-Y. Huang, and R.-B. Wu, "Design of dual- and triple passband filters using alternately cascaded multiband resonators," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 9, 3550-3558, Sep. 2006.
doi:10.1109/TMTT.2006.880653

12. Du, C., K. Ma, and S. Mou, "A miniature SISL dual-band bandpass filter using a controllable multimode resonator," IEEE Microw. Wireless Compon. Lett., Vol. 27, No. 6, 557-559, Jun. 2017.
doi:10.1109/LMWC.2017.2701341

13. Chen, C.-Y. and C.-Y. Hsu, "A simple and effective method for microstrip dual-band filters design," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 246-248, May 2006.
doi:10.1109/LMWC.2006.873584

14. Li, J.-J., C.-F. Chen, and G.-Y. Wang, "A compact dual-band bandpass filter with flexible band control and simple layout," 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 1-5, IEEE, 2018.

15. Hong, J.-S. and M. J. Lancaster, "Theory and experiment of novel microstrip slow-wave open-loop resonator filters," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 12, 2358-2365, 1997.
doi:10.1109/22.643844

16. Hong, J.-S. and M. J. Lancaster, "Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 7, 1098-1107, 2000.
doi:10.1109/22.848492

17. Athukorala, L., D. Budimir, and M. M. Potrebic, "Design of open-loop dual-mode microstrip filters," Progress In Electromagnetics Research Letters, Vol. 19, 179-185, 2010.
doi:10.2528/PIERL10102007

18. Hong, J.-S., H. Shaman, and Y.-H. Chun, "Dual-mode microstrip open-loop resonators and filters," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 8, 1764-1770, 2007.
doi:10.1109/TMTT.2007.901592

19. Wattikornsirikul, N. and M. Kumngern, "Dual-mode dual-band bandpass filter with asymmetrical transmission zeros," Progress In Electromagnetics Research M, Vol. 86, 193-202, 2019.
doi:10.2528/PIERM19090101