1. Borek, S. E., B. J. Clarke, and P. J. Costianes, "Through-the-wall surveillance for homeland security and law enforcement," Proc SPIE, Vol. 5778, 175-185, 2005.
doi:10.1117/12.602897 Google Scholar
2. Burchett, H., "Advances in through wall radar for search, rescue and security applications," 2006 IET Conference on Crime and Security, 511-525, London, UK, 2006. Google Scholar
3. Staderini, E. M., "UWB radars in medicine," IEEE Aeros. Elec. Sys. Mag., Vol. 17, No. 1, 13-18, 2002.
doi:10.1109/62.978359 Google Scholar
4. Ernestina, C. and G. Bharat, "FM-UWB for communications and radar in medical applications," Wireless. Pers. Commun., Vol. 51, 793-809, 2009. Google Scholar
5. Chang, J., C. Paulson, and P. Welsh, "Development of micropower ultrawideband impulse radar medical diagnostic systems for continuous monitoring applications and austere environments," 2012 IEEE Radar Conference, 699-704, 2012.
doi:10.1109/RADAR.2012.6212228 Google Scholar
6. Gu, C. Z. and C. Z. Li, "From tumor targeting to speech monitoring: Accurate respiratory monitoring using medical continuous-wave radar sensors," IEEE Microwave Magazine, Vol. 15, 66-76, 2014. Google Scholar
7. Mostov, K., E. Liptsen, and R. Boutchko, "Medical applications of shortwave FM radar: Remote monitoring of cardiac and respiratory motion," Medical Physics, Vol. 37, No. 3, 1332-1338, 2010.
doi:10.1118/1.3267038 Google Scholar
8. Kim, Y., S. Ha, and J. Kwon, "Human detection using doppler radar based on physical characteristics of targets," IEEE Geoscience and Remote Sensing Letters, Vol. 12, No. 2, 289-293, 2015.
doi:10.1109/LGRS.2014.2336231 Google Scholar
9. Nanzer, J. A., "A review of microwave wireless techniques for human presence detection and classification," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 5, 1780-1794, 2017.
doi:10.1109/TMTT.2017.2650909 Google Scholar
10. Liang, F. L., F. G. Qi, Q. An, H. Lv, F. M. Chen, Z. Li, and J. Q. Wang, "Detection of multiple stationary humans using UWB MIMO radar," Sensors, Vol. 16, No. 11, 1922-1938, Basel, Switzerland, 2016.
doi:10.3390/s16111922 Google Scholar
11. Li, J., Z. Zeng, J. Sun, and F. Liu, "Through-wall detection of human Being's movement by UWB radar," IEEE Geoscience and Remote Sensing Letters, Vol. 9, No. 6, 1079-1083, 2012.
doi:10.1109/LGRS.2012.2190707 Google Scholar
12. Thiel, M. and K. Sarabandi, "Ultra wideband multi-static scattering analysis of human movement within buildings for the purpose of stand-off detection and localization," IEEE Trans. Antennas Propag., Vol. 59, 1261-1268, 2011.
doi:10.1109/TAP.2011.2109349 Google Scholar
13. Van, N., A. Q. Javaid, and M. A. Weitnauer, "Detection of motion and posture change using an IR-UWB radar," 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 3650-3653, Orlando, FL, USA, 2016. Google Scholar
14. Kiasari, M. A., S. Y. Na, J. Y. Kim, and Y. Won, "Monitoring human behavior patterns using ultra-wide band radar based on neural networks," Asia Life Sciences, 13-29, 2015. Google Scholar
15. Zhai, S. J. and T. Jiang, "Target detection and classification by measuring and processing bistatic UWB radar signal," Measurement, Vol. 47, 547-557, 2014.
doi:10.1016/j.measurement.2013.08.031 Google Scholar
16. Bryan, J. D., J. Kwon, N. Lee, and Y. Kim, "Application of ultra-wide band radar for classification of human activities," IET Radar, Sonar & Navigation, Vol. 6, No. 3, 172-179, 2012.
doi:10.1049/iet-rsn.2011.0101 Google Scholar
17. Lv, H., G. H. Lu, X. J. Jing, and J. Q. Wang, "A new ultra-wideband radar for detecting survivors buried under earthquake rubbles," Microwave & Optical Technology Letters, Vol. 52, No. 11, 2621-2624, 2010.
doi:10.1002/mop.25539 Google Scholar
18. Wang, J. Q., C. X. Zheng, G. H. Lu, and X. J. Jing, "A new method for identifying the life parameters via radar," EURASIP Journal on Advances in Signal Processing, Vol. 2007, No. 1, 1-8, 2007.
doi:10.1155/2007/89264 Google Scholar
19. Zhang, Y., F. M. Chen, H. J. Xue, Z. Li, Q. An, J. Q. Wang, and Y. Zhang, "Detection and identification of multiple stationary human targets via bio-radar based on the cross-correlation method," Sensors, Vol. 16, No. 11, 1793-1804, 2016.
doi:10.3390/s16111793 Google Scholar
20. Liang, F. L., F. G. Qi, Q. An, H. Lv, F. M. Chen, Z. Li, and J. Q. Wang, "Detection of multiple stationary humans using UWB MIMO radar," Sensors, Vol. 16, No. 11, 1922-1938, Basel, Switzerland, 2016.
doi:10.3390/s16111922 Google Scholar
21. Lv, H., F. G. Qi, Y. Zhang, T. Jiao, F. L. Liang, Z. Li, and J. Q. Wang, "Improved detection of human respiration using data fusion based on a multistatic UWB radar," Remote Sensing, Vol. 8, No. 9, 773-791, 2016.
doi:10.3390/rs8090773 Google Scholar
22. Lv, H., W. Li, Z. Li, Y. Zhang, T. Jiao, H. J. Xue, M. Liu, X. J. Jing, and J. Q. Wang, "Characterization and identification of IR-UWB respiratory-motion response of trapped victims," IEEE Trans. Geosci. Remote Sens., Vol. 52, 7195-7204, 2014.
doi:10.1109/TGRS.2014.2309141 Google Scholar
23. Yu, X., T. J. Jiao, H. Lv, Y. Zhang, Z. Li, and J. Q. Wang, "A new use of UWB radar to detecting victims and discriminating humans from animals," 2016 16th International Conference on Ground Penetrating Radar (GPR), 1-5, Hong Kong, China, June 2016. Google Scholar
24. Wang, Y., X. Yu, Y. Zhang, H. Lv, T. Jiao, G. Lu, W. Z. Li, Z. Li, X. Jing, and J. Wang, "Using wavelet entropy to distinguish between humans and dogs detected by UWB radar," Progress In Electromagnetics Research, Vol. 139, 335-352, 2013.
doi:10.2528/PIER13032508 Google Scholar
25. Yin, Y., X. Yu, H. Lv, F. G. Qi, Z. Q. Zhang, and J. Q. Wang, "Micro-vibration distinguishment of radar between humans and animals based on EEMD and energy ratio characteristics," China Medical Devices, Vol. 33, No. 10, 27-31, 2018. Google Scholar
26. Nunez, T. C., "Cotton BA transfusion therapy in hemorrhagic shock," Curr. Opin. Crit. Care, Vol. 15, 536-541, 2009.
doi:10.1097/MCC.0b013e328331575b Google Scholar
27. Matsui, T., T. Ishizuka, B. Takase, M. Ishihara, and M. Kikuchi, "Non-contact determination of vital sign alterations in hypovolaemic states induced by massive haemorrhage: An experimental attempt to monitor the condition of injured persons behind barriers or under disaster rubble," Medical and Biological Engineering and Computing, Vol. 42, No. 6, 807-811, 2004.
doi:10.1007/BF02345214 Google Scholar
28. Wang, D. W., Y. Li, and R. Y. Peng, "Characters of the kinds and severity of injuries in deeply buried wounded personnel due to disaster and the monitoring of their vital sign," J. Trauma. Surg., Vol. 19, No. 10, 792-795, 2017. Google Scholar
29. Azriel, P., R. Pizov, and C. Shamay, "Systolic blood pressure variation is a sensitive indicator of hypovolemia in ventilated dogs subjected to graded hemorrhage," Anesthesiology, Vol. 67, 498-502, 1987. Google Scholar
30. Stern, A., C. D. Susan, B. P. Steven, and X. Wang, "Effect of blood pressure on haemorrhage volume and survival in a nearfatal haemorrhage model incorporating a vascular injury," Annals of Emergency Medicine, Vol. 22, 155-163, 1993.
doi:10.1016/S0196-0644(05)80195-7 Google Scholar
31. Fulop, A., Z. Turoczi, D. Garbaisz, L. Harsanyi, and A. Szijarto, "Experimental models of hemorrhagic shock: A review," European Surgical Research, Vol. 50, No. 2, 57-70, 2013.
doi:10.1159/000348808 Google Scholar
32. Gutierrez, G. and H. D. Reines, "Wulf-gutierrez ME clinical review: Hemorrhagic shock," Crit. Care, Vol. 8, 373-381, 2004.
doi:10.1186/cc2851 Google Scholar
33. Shannon, C. E., "A mathematical theory of communication," ACM SIGMOBILE Mobile Computing and Communication Review, Vol. 5, No. 1, 3-55, 1948.
doi:10.1145/584091.584093 Google Scholar
34. Hasan, A. A., S. P. Joseph, C. Z. Wendy, F. H. Daniel, and V. T. Nitish, "Wavelet entropy for subband segmentation of EEG during injury and recovery," Annals of Biomedical Engineering, Vol. 31, 653-658, 2003. Google Scholar
35. Cover, T. M. and P. E. Hart, "Nearest neighbor pattern classification," IEEE Transactions on Information Theory, Vol. 13, No. 1, 21-27, 1967.
doi:10.1109/TIT.1967.1053964 Google Scholar
36. Hand, D., H. Mannila, and P. Smyth, Principles of Data Mining, The MIT Press, 2013.
37. Zhang, H., C. B. Alexander, M. Michael, and M. Jitendra, "SVM-KNN: Discriminative nearest neighbor classification for visual category recognition," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2126-2136, New York, US, 2006. Google Scholar