1. Evans, D., The internet of things: How the next evolution of the internet is changing everything, Cisco Internet Business Solutions Group (IBSG), Cisco Systems, Inc., San Jose, CA, White Paper [Online] http://www.cisco.com/web/about/ac79/docs/innov/IoT IBSG 0411FINAL.pdf, 2011.
2. Nordrum, A., "Popular Internet of Things forecast of 50 billion devices by 2020 is outdated," IEEE Spectrum, [Online] https://spectrum.ieee.org/tech-talk/telecom/internet/popular-internet-of-things-forecast-of-50-billion-devices-by-2020-is-outdated, 2016. Google Scholar
3. Hsua, C. L. and J. C.-C. Lin, "An empirical examination of consumer adoption of Internet of Things services: Network externalities and concern for information privacy perspectives," Comp. Human Behavior, Vol. 62, 516-527, 2016.
doi:10.1016/j.chb.2016.04.023 Google Scholar
4. Manyika, J., et al., Unlocking the potential of the Internet of Things, McKinsey Global Institute, McKinsey & Company (Digital) [Online] https://www.mckinsey.com/industries/semiconductors/our-insights/whats-new-with-the-internet-of-things#, 2015.
5. Patel, M., J. Shangkuan, and C. Thomas, What’s new with the Internet of Things?, McKinsey & Company (Semiconductors) [Online] https://www.mckinsey.com/industries/semiconductors/ourinsights/whats-new-with-the-internet-of-things#, 2017.
6. Edquist, H., P. Goodridge, and J. Haskel, "The internet of things and economic growth in a panel of countries," Econ. Innov. New Technology, [Online] https://doi.org/10.1080/10438599.2019.1695941, 2019. Google Scholar
7. Espinoza, H., et al., "Estimating the impact of the internet of things on productivity in Europe," Heliyon, Vol. 6, e03935, [Online] https://doi.org/10.1016/j.heliyon.2020.e03935, 2020.
doi:10.1016/j.heliyon.2020.e03935 Google Scholar
8. Lai, X., Z. Xie, and X. Cen, "Compact loop antenna for near-field and far-field UHF RFID applications," Progress In Electromagnetics Research, Vol. 37, 171-182, 2013.
doi:10.2528/PIERC12123105 Google Scholar
9. Bhaskar, S. and A. K. Singh, "Meandered cross-shaped slot circularly polarised antenna for handheld UHF RFID reader," Int. J. Electron. Commun. (AEU), Vol. 100, 106-113, 2019.
doi:10.1016/j.aeue.2018.12.024 Google Scholar
10. Damis, H. A., et al., "Investigation of epidermal loop antennas for biotelemetry IoT applications," IEEE Access, Vol. 6, 15806-15815, 2018.
doi:10.1109/ACCESS.2018.2814005 Google Scholar
11. Contopanagos, H. F., P. Broutas, and S. Chatzandroulis, "Embedded multi-slotted PIFAs for remotely powered passive UHF RFID tags," Microw. Opt. Tech. Lett., Vol. 54, No. 10, 2379-2383, 2012.
doi:10.1002/mop.27096 Google Scholar
12. Broutas, P., et al., "A RF power harvester with integrated antenna capable of operating near ground planes," Sensors and Actuators A, Vol. 186, 284-288, 2012.
doi:10.1016/j.sna.2012.05.040 Google Scholar
13. Mohammadpour-Aghdam, K., et al., "Miniaturized integrated antennas for far-field wireless powering," Int. J. Electron. Commun. (AEU), Vol. 66, No. 10, 789-796, 2012.
doi:10.1016/j.aeue.2012.01.009 Google Scholar
14. Hu, C. H., et al., "One- and two-dimensional antenna arrays for Microwave Wireless Power Transfer (MWPT) systems," IEEE Wireless Power Transfer Conf. (WPTC), 1-–4, Taipei, Taiwan, May 10–12, 2017. Google Scholar
15. Lizzi, L., et al., "Design of miniature antennas for IoT applications," IEEE 6th Int. Conf. on Comm. Electr. (ICCE), 234-237, 2016. Google Scholar
16. Lizzi, L. and F. Ferrero, "Use of ultra-narrow band miniature antennas for internet-of-things applications," Electron. Lett., Vol. 51, No. 24, 1964-1966, 2015.
doi:10.1049/el.2015.3142 Google Scholar
17. Powell, C. R. and R. D. Murch, "A capacitively loaded PIFA for compact mobile telephone handsets," IEEE Trans. Antennas Propag., Vol. 45, No. 5, 837-841, 1997.
doi:10.1109/8.575634 Google Scholar
18. Liu, Z. D., P. S. Hall, and D. Wake, "Dual-frequency planar inverted-F antenna," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1451-1458, 1997.
doi:10.1109/8.633849 Google Scholar
19. Virga, K. L. and Y. Rahmat-Samii, "Low profile enhanced-bandwidth PIFA antennas for wireless communications packaging," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1879-1888, 1997. Google Scholar
20. Salonen, P., M. Keskilammi, and M. Kivikoski, "Single-feed dual-band inverted-F antenna with U-shaped slot," IEEE Trans. Antennas Propag., Vol. 48, No. 8, 1262-1264, 2000.
doi:10.1109/8.884498 Google Scholar
21. Contopanagos, H., S. Rawson, and L. Desclos, "Wheeler’s law and related issues in integrated antennas," IEEE AP-S Digest, 2055-2058, Monterey, CA, 2004. Google Scholar
22. Dong, Y., J. Choi, and T. Itoh, "Folded strip/slot antenna with extended bandwidth for WLAN application," IEEE Ant. Wireless Propag. Lett., Vol. 16, 673-676, 2017.
doi:10.1109/LAWP.2016.2598276 Google Scholar
23. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, 1947.
doi:10.1109/JRPROC.1947.226199 Google Scholar
24. Chu, L. J., "Physical limitations of omni-directional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
doi:10.1063/1.1715038 Google Scholar
25. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
doi:10.1109/8.496253 Google Scholar
26. Sten, J. C., P. K. Koivisto, and A. Hujanen, "Limitations for the radiation Q of a small antenna enclosed in a spheroidal volume: Axial polarization," Int. J. Electron. Commun. (AEU), Vol. 55, No. 3, 198-204, 2001.
doi:10.1078/1434-8411-00030 Google Scholar
27. Best, S. R., "Low-Q electrically small linear and elliptical polarized spherical dipole antennas," IEEE Trans. Antennas Propag., Vol. 53, No. 3, 1047-1053, 2005.
doi:10.1109/TAP.2004.842600 Google Scholar
28. Kim, O. S., "Low-Q electrically small spherical magnetic dipole antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2210-2217, 2010.
doi:10.1109/TAP.2010.2048863 Google Scholar
29. Pfeiffer, C., "Fundamental efficiency limits for small metallic antennas," IEEE Trans. Antennas Propag., Vol. 65, No. 4, 1642-1650, 2017.
doi:10.1109/TAP.2017.2670532 Google Scholar
30. Thal, Jr., H. L., "Radiation efficiency limits for elementary antenna shapes," IEEE Trans. Antennas Propag., Vol. 66, No. 5, 2179-2187, 2018.
doi:10.1109/TAP.2018.2809507 Google Scholar
31. Shahpari, M. and D. V. Thiel, "Fundamental limitations for antenna radiation efficiency," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 3894-3901, 2018.
doi:10.1109/TAP.2018.2836447 Google Scholar
32. Kumar, S., et al., "A bandwidth enhanced 915 MHz antenna for IoT wrist-watch applications," 13th European Conf. Ant. Propag. (EuCAP 2019), 1-5, Krakow, Poland, March 31–April 5, 2019. Google Scholar
33. Das, S., et al., "A strongly miniaturized and inherently matched folded dipole antenna for narrowband applications," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3377-3386, 2020.
doi:10.1109/TAP.2019.2963232 Google Scholar