1. Malisuwan, S., J. Sivaraks, N. Madan, and N. Suriyakrai, "Design of microstrip patch antenna for Ku-band satellite communication applications," International Journal of Computer and Communication Engineering, Vol. 3, No. 6, November 2014.
doi:10.7763/IJCCE.2014.V3.413 Google Scholar
2. Patel, N., J. Singh, and M. Tiwari, "Rectangular microstrip patch antenna for wireless communications at 6.5 GHz," International Journal of Scientific & Engineering Research, Vol. 5, No. 3, March 2014, ISSN 2229-5518. Google Scholar
3. Khanna, G. and N. Sharma, "Fractal antenna geometries: A review," International Journal of Computer Applications (0975–8887), Vol. 153, No. 7, November 2016. Google Scholar
4. Borazjani, O., M. Naser-Moghadasi, J. Rashed-Mohassel, and R. A. Sadeghzadeh, "Design and fabrication of a new high gain multilayer negative refractive index metamaterial antenna for X-band applications," International Journal of RF and Microwaves Computer Aided Engineering, Wiley, April 26, 2020. Google Scholar
5. Soba, J., Chairunnisa, and A. Munir, Dual-band patch antenna incorporated with SRR for GPS and WLAN application, IEEE, 2017.
6. Raja Lakshmi, P. and N. Gunavathi, "Gain enhancement of cross shaped patch antenna for IEEE 802.11ax Wi-Fi applications," Progress In Electromagnetics Research Letters, Vol. 80, 91-99, 2018.
doi:10.2528/PIERL18091401 Google Scholar
7. Devi, K. A., C. H. Ng, C. F. Kwong, C. K. Chakrabarty, and N. Md. Din, "Investigations on characteristics of metamaterial based patch antenna for RF energy harvesting at GSM 900," Electrical and Electronic Engineering, Vol. 5, No. 1A, 7-13, 2015. Google Scholar
8. Asadullah, G. M., M. R. Islam, M. S. Islam, and M. M. H. Mahfuz, "A circular equivalent planar array configuration for 5.8 GHz radar application," AIP Conference Proceedings, March 2020. Google Scholar
9. Kovacs, P. and T. Urbanec, Radio Engineering, Vol. 21, No. 1, April 2012. Google Scholar
10. Kumar, A. and S. Raghavan, "A review: Substrate integrated waveguide antennas and arrays," Journal of Telecommunication, Electronic and Computer Engineering, Vol. 8, No. 5, May–August 2016, ISSN: 2180-1843, e-ISSN: 2289. Google Scholar
11. Khandelwal, M. K., B. K. Kanaujia, and S. Kumar, "Defected ground structure: Fundamentals, analysis, and applications in modern wireless trends," Hindawi International Journal of Antennas and Propagation, Vol. 2017, 2017. Google Scholar
12. Kumar, A. and K. V. Machavaram, "Microstrip filter with defected ground structure: A close perspective," International Journal of Microwave and Wireless Technologies, Vol. 5, No. 5, 589-602, 2013.
doi:10.1017/S1759078713000639 Google Scholar
13. Sibi Chakravarthy, S., N. Sarveshwaran, S. Sriharini, and M. Shanmugapriya, Comparative study on different feeding techniques of rectangular patch antenna, IEEE, 2016.
14. You, C., M. M. Tentzeris, and W. Hwang, "Multilayer effects on microstrip antennas for their integration with mechanical structures," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, April 2007. Google Scholar
15. Jose Alfredo, H., F. Iturbide, I. Garcia-Ruiz, V. Molina-Lopez, and R. Acevo-Herrera, "A Defected Microstrip Structure (DMS) behavior for reducing rectangular patch antenna size," Microwave and Optical Technology Letters, Vol. 43, No. 6, December 20, 2004. Google Scholar
16. Anwar, R. S., L. Mao, and H. Ning, "Frequency selective surfaces: A review," Applied Sciences, 2018. Google Scholar
17. Joshi, N. K. and P. A. Upadhye, "Microstrip patch antenna with W-shape slot using dual dielectric substrates," 2nd International Conference on Communication Engineering and Technology, 2019. Google Scholar
18. Karamchandani, S. H., S. Shubham, H. D. Mustafa, S. N. Merchant, and U. B. Desai, Dual band M-shaped UWB patch antenna for wireless body area networks, IEEE, 2011.
19. Meena, M. L. and M. Kumar, "Eight shape microstrip patch antenna with crescent slot for wide band applications," Conference Paper, September 2013. Google Scholar
20. Mishra, R. G., R. Mishra, P. Kuchhal, and N. Prasanthi Kumari, Performance enhancement of rectangular microstrip antenna by inserting notches and slits, January 2018.
21. Parkt, J.-S., J.-H. Kimt, J.-H. Leet, S.-H. Kimt, and S.-H. Myungtt, "A novel equivalent circuit and modeling method for defected ground structure and its application tooptimization of a DGS low pass filter," 2002 IEEE MTT-S Digest, 2002. Google Scholar
22. Kapoor, S. and D. Parkash, "Miniaturized triple band microstrip patch antenna with defected ground structure for wireless communication applications," International Journal of Computer Applications (0975–8887), Vol. 57, No. 7, November 2012. Google Scholar
23. Kapoor, S. and D. Parkash, "Microstrip patch antenna with SKEW-F shaped DGS for dual band operation," Progress In Electromagnetics Research M, Vol. 19, 147-160, 2011. Google Scholar
24. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302 Google Scholar
25. Er-Rebyiy, R., J. Zbitou, M. Latrach, A. Tajmouati, A. Errkik, and L. El Abdellaoui, "New miniature planar microstrip antenna using DGS for ISM applications," TELKOMNIKA, Vol. 15, No. 3, 1149-1154, September 2017.
doi:10.12928/telkomnika.v15i3.6864 Google Scholar
26. Ghaloua, A., J. Zbitou, L. El Abdellaoui, and M. Latrach, "A miniature circular patch antenna using defected ground structure for ISM band applications," ICCWCS’17, Larache, Morocco, November 14–16, 2017. Google Scholar
27. Er-Rebyiy, R., J. Zbitou, M. Latrach, A. Tajmouati, A. Errkik, and L. El Abdellaoui, "A novel design of a miniature low cost planar antenna for ISM band applications," ICCWCS’17, Larache, Morocco, November 14–16, 2017. Google Scholar
28. Mouhssine, A., Z. Doulfakar, R. Dakir, A. Erkkik, and M. Latrach, "A new compact and miniaturized CPW antenna with DGS and paper substrate for ISM band application," ICCWCS’17, Larache, Morocco, November 14–16, 2017. Google Scholar
29. Er-Rebyiy, R., J. Zbitou, A. Tajmouati, M. Latrach, A. Errkik, and L. El Abdellaoui, A new design of a miniature microstrip patch antenna using defected ground structure DGS, IEEE, 2017.
30. Suvarna, K., N. Ramamurthy, and D. V. Vardhan, "A miniature rectangular patch antenna using defected ground structure for WLAN applications," Progress In Electromagnetics Research C, Vol. 95, 131-140, 2019.
doi:10.2528/PIERC19061602 Google Scholar
31. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of negative permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, 2002. Google Scholar
32. Chen, H. J., J. Zhang, Y. Bai, Y. Luo, L. X. Ran, Q. Jiang, et al. "Experimental retrieval of the effective parameters of metamaterial based on a waveguide method," Optics Express, Vol. 14, No. 26, 2006. Google Scholar
33. Huang, Y. and K. Boyle, Antennas from Theory to Practice, A John Wiley and Sons, Ltd., Publication, 2008.
34. Bahl, I. J. and P. Bhartia, Microstrip Antennas Dedham, Artech House, 1980.
35. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, 2005.
36. Guha, D. and Y. M. M. Antar, "Microstrip and Printed Antennas New Trends, Techniques and Applications," John Wiley Sons Ltd, 2011. Google Scholar