1. Nadaud, K., C. Borderon, R. Renoud, A. Ghalem, A. Crunteanu, L. Huitema, F. Dumas-Bouchiat, P. Marchet, C. Champeaux, and H. W. Gundel, "Domain wall motions in BST ferroelectric thin films in the microwave frequency range," Appl. Phys. Lett., Vol. 109, No. 26, 1-5, 2016.
doi:10.1063/1.4973451 Google Scholar
2. Borderon, C., R. Renoud, M. Ragheb, and H. W. Gundel, "Description of the low field nonlinear dielectric properties of ferroelectric and multiferroic materials," Appl. Phys. Lett., Vol. 98, No. 11, 11-13, 2011.
doi:10.1063/1.3567777 Google Scholar
3. Balci, O., E. O. Polat, N. Kakenov, and C. Kocabas, "Graphene-enabled electrically switchable radar-absorbing surfaces," Nature Communications, Vol. 6, 1-9, 2015. Google Scholar
4. Yao, X., X. Kou, and J. Qiu, "Multi-walled carbon nanotubes/polyaniline composites with negative permittivity and negative permeability," Carbon, Vol. 107, 261-267, 2016.
doi:10.1016/j.carbon.2016.05.055 Google Scholar
5. Che, R. C., C. Y. Zhi, C. Y. Liang, and X. G. Zhou, "Fabrication and microwave absorption of carbon nanotubes CoFe2O4 spinel nanocomposite," Appl. Phys. Lett., Vol. 88, No. 3, 1-3, 2006.
doi:10.1063/1.2165276 Google Scholar
6. Lv, R., F. Kang, J. Gu, X. Gui, J. Wei, K. Wang, and D. Wu, "Carbon nanotubes filled with ferromagnetic alloy nanowires: Lightweight and wide-band microwave absorber," Appl. Phys. Lett., Vol. 93, No. 22, 2006-2009, 2008.
doi:10.1063/1.3042099 Google Scholar
7. Zhang, B., J. Wang, J. Wang, S. Huo, B. Zhang, and Y. Tang, "Microwave absorption properties of lightweight absorber based on Fe50Ni50-coated poly(acrylonitrile) microspheres and reduced graphene oxide composites," Journal of Magnetism and Magnetic Materials, Vol. 413, 81-88, 2016.
doi:10.1016/j.jmmm.2016.04.014 Google Scholar
8. Gui, X., W. Ye, J. Wei, K. Wang, R. Lv, H. Zhu, F. Kang, J. Gu, and D. Wu, "Optimization of electromagnetic matching of Fe-filled carbon nanotubes/ferrite composites for microwave absorption," Journal of Physics D: Applied Physics, Vol. 42, No. 7, 075002, 2009.
doi:10.1088/0022-3727/42/7/075002 Google Scholar
9. Ganchev, S. I., N. Qaddoumi, S. Bakhtiari, and R. Zoughi, "Calibration and measurement of dielectric properties of finite thickness composite sheets with open-ended coaxial sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 44, No. 6, 1023-1029, 1995.
doi:10.1109/19.475149 Google Scholar
10. Drinovsky, J. and Z. Kejık, "Electromagnetic shielding efficiency measurement of composite materials," Measurement Science Review, Vol. 9, No. 4, 109-112, 2009.
doi:10.2478/v10048-009-0020-8 Google Scholar
11. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Transactions on Instrumentation and Measurement, Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249 Google Scholar
12. Paul, C. R., Analysis of Multiconductor Transmission Lines, Wiley-Interscience, 2008.
13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Transactions on Instrumentation and Measurement, Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
15. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, Jr., and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," NASA STI/Recon Technical Report N, Vol. 93, 12084, 1992. Google Scholar
16. Barry, W., "A broad-band, automated, stripline technique for the simultaneous measurement of complex permittivity and permeability," IEEE Transactions on Microwave Theory and Techniques, Vol. 34, No. 1, 80-84, 1986.
doi:10.1109/TMTT.1986.1133283 Google Scholar
17. Hassan, A. M., J. Obrzut, and E. J. Garboczi, "A Q-band free-space characterization of carbon nanotube composites," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 11, 3807-3819, 2016.
doi:10.1109/TMTT.2016.2603500 Google Scholar
18. Vanzura, E. J., J. R. Baker-Jarvis, J. H. Grosvenor, and M. D. Janezic, "Intercomparison of permittivity measurements using the transmission/reflection method in 7-mm coaxial transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, No. 11, 2063-2070, 1994.
doi:10.1109/22.330120 Google Scholar
19. Wang, Y., I. Hooper, E. Edwards, and P. S. Grant, "Gap-corrected thin-film permittivity and permeability measurement with a broadband coaxial line technique," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 3, 924-930, 2016. Google Scholar
20. Jamaian, S. S. and T. G. Mackay, "On limitations of the Bruggeman formalism for inverse homogenization," Journal of Nanophotonics, Vol. 4, No. 1, 1-8, 2010.
doi:10.1117/1.3460908 Google Scholar
21. Baker-Jarvis, J., M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, "Transmission/reflection and short-circuit line methods for measuring permittivity and permeability," Tech. Rep., NIST, 1992. Google Scholar
22. Whites, K. W., "Electromagnetic wave propagation through circular waveguides containing radially inhomogeneous lossy media," Tech. Rep., Construction Engineering Research Lab, (ARMY), Champaign, IL, 1989. Google Scholar
23. Fehlen, R. G., Air gap error compensation for coaxial transmission line, Ph.D. dissertation, Air Force Institute, 2006.
24. Mattar, K. E., D. G. Watters, M. E. Brodwin, and L. S. Member, "Influence of wall contacts on measured complex permittivity spectra at coaxial line frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, No. 3, 532-537, 1991.
doi:10.1109/22.75297 Google Scholar
25. Leuchtmann, P. and J. Rufenacht, "On the calculation of the electrical properties of precision coaxial lines," IEEE Transactions on Instrumentation and Measurement, Vol. 53, No. 2, 392-397, 2004.
doi:10.1109/TIM.2003.822719 Google Scholar
26. Kim, S., H. Wakatsuchi, J. J. Rushton, and D. F. Sievenpiper, "Switchable nonlinear metasurfaces for absorbing high power surface waves," Applied Physics Letters, Vol. 108, No. 4, 1-5, 2016. Google Scholar
27. Luo, Z., X. Chen, J. Long, R. Quarfoth, and D. Sievenpiper, "Nonlinear power-dependent impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 4, 1736-1745, 2015.
doi:10.1109/TAP.2015.2399513 Google Scholar
28. Riddle, B., J. Baker-Jarvis, and J. Krupka, "Complex permittivity measurements of common plastics over variable temperatures," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 3, 727-733, 2003.
doi:10.1109/TMTT.2003.808730 Google Scholar
29. Belous, A., O. Ovchar, and D. Mischuk, "Temperature trends of the permittivity in complex oxides of rare-earth elements with perovskite-type structure," Condensed Matter Physics, Vol. 6, No. 2, 251, 2003.
doi:10.5488/CMP.6.2.251 Google Scholar