1. Di Renzo, M., A. Zappone, M. Debbah, M. S. Alouini, C. Yuen, J. de Rosny, and S. Tretyakov, "Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2450-2525, 2020.
doi:10.1109/JSAC.2020.3007211 Google Scholar
2. ElMossallamy, M. A., H. Zhang, L. Song, K. G. Seddik, Z. Han, and G. Y. Li, "Reconfigurable intelligent surfaces for wireless communications: Principles, challenges, and opportunities," IEEE Transactions on Cognitive Communications and Networking, Vol. 6, No. 3, 990-1002, 2020.
doi:10.1109/TCCN.2020.2992604 Google Scholar
3. Liaskos, C., A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. F. Akyildiz, "Using any surface to realize a new paradigm for wireless communications," ACM Commun., Vol. 61, No. 11, 30-33, Nov. 2018.
doi:10.1145/3192336 Google Scholar
. The next hyper — Connected experience for all, White Paper, Samsung 6G Vision, Jun. 2020.
5. Pan, C., H. Ren, K. Wang, M. Elkashlan, A. Nallanathan, J. Wang, and L. Hanzo, "Intelligent reflecting surface aided mimo broadcasting for simultaneous wireless information and power transfer," IEEE Journal on Selected Areas in Communications, 2020. Google Scholar
6. Chu, Z., W. Hao, P. Xiao, and J. Shi, "Intelligent reflecting surface aided multi-antenna secure transmission," IEEE Wireless Communications Letters, Vol. 9, No. 1, 108-112, 2019.
doi:10.1109/LWC.2019.2943559 Google Scholar
7. Park, S. Y. and D. I. Kim, "Intelligent reflecting surface-aided phaseshift backscatter communication," 2020 14th International Conference on Ubiquitous Information Management and Communication (IMCOM), 1-5, IEEE, 2020. Google Scholar
8. Zhang, H., H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "Towards ubiquitous positioning by leveraging reconfigurable intelligent surface," IEEE Communications Letters, Sep. 10, 2020. Google Scholar
9. Nepa, P. and A. Buffi, "Near-field-focused microwave antennas: Near-field shaping and implementation," IEEE Antennas and Propagation Magazine, Vol. 59, No. 3, 42-53, 2017.
doi:10.1109/MAP.2017.2686118 Google Scholar
10. Huang, C., G. C. Alexandropoulos, C. Yuen, and M. Debbah, "Indoor signal focusing with deep learning designed reconfigurable intelligent surfaces," 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2019. Google Scholar
11. Nayeri, P., A. Z. Elsherbeni, R. L. Haupt, and F. Yang, "Near-field scanning characteristics of focused reflectarray antennas," 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), 1-2, IEEE, 2015. Google Scholar
12. Dehnavi, M. M. and J. Laurin, "Near field focusing using a circularly polarized reconfigurable reflectarray," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 1953-1954, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8889130 Google Scholar
13. Di Renzo, M., F. Habibi Danufane, X. Xi, J. de Rosny, and S. Tretyakov, "Analytical modeling of the path-loss for reconfigurable intelligent surfaces — Anomalous mirror or scatterer?," 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 1-5, 2020. Google Scholar
14. Tang, W., M. Z. Chen, X. Chen, J. Y. Dai, Y. Han, M. Di Renzo, Y. Zeng, S. Jin, Q. Cheng, and T. J. Cui, "Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement," IEEE Transactions on Wireless Communications, 2020.
doi:10.1109/TWC.2020.3041339 Google Scholar
15. Hu, S., F. Rusek, and O. Edfors, "The potential of using large antenna arrays on intelligent surfaces," 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-6, Sydney, NSW, 2017. Google Scholar
16. Garcia, J. C. B., A. Sibille, and M. Kamoun, "Reconfigurable intelligent surfaces: Bridging the gap between scattering and reflection," IEEE Journal on Selected Areas in Communications, Vol. 38, No. 11, 2538-2547, 2020.
doi:10.1109/JSAC.2020.3007037 Google Scholar
17. Tuan, S. and H. Chou, "Asymptotic analysis of scattering from reflectarray antennas for the near-field focused applications," 2015 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 173-176, 2015.
doi:10.1109/APEMC.2015.7175322 Google Scholar
18. Arrebola, M., Y. Alvarez, J. A. Encinar, and F. Las-Heras, "Accurate analysis of printed reflectarrays considering the near field of the primary feed," IET Microwaves, Antennas Propagation, Vol. 3, No. 2, 187-194, 2009.
doi:10.1049/iet-map:20070325 Google Scholar
19. Chou, H., T. Hung, N. Wang, H. Chou, C. Tung, and P. Nepa, "Design of a near-field focused reflectarray antenna for 2.4 GHz RFID reader applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 1013-1018, 2011.
doi:10.1109/TAP.2010.2103030 Google Scholar
20. Hu, S., F. Rusek, and O. Edfors, "Beyond massive MIMO: The potential of positioning with large intelligent surfaces," IEEE Trans. Signal Process., Vol. 66, No. 7, 1761-1774, Apr. 2018.
doi:10.1109/TSP.2018.2795547 Google Scholar
21. Wymeersch, H. and B. Denis, "Beyond 5G wireless localization with reconfigurable intelligent surfaces," Proc. IEEE ICC, 1-6, Dublin, Ireland, Jun. 2020. Google Scholar
22. Huang, J. and J. A. Encinar, Antenna Analysis Techniques, Chapter 3, 27-78, John Wiley & Sons, Ltd, 2007, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470178775.ch3.
23. Sherman, J., "Properties of focused apertures in the fresnel region," IRE Transactions on Antennas and Propagation, Vol. 10, No. 4, 399-408, 1962.
doi:10.1109/TAP.1962.1137900 Google Scholar
24. Silver, S., Microwave Antenna Theory and Design, Massachusetts Institute of Technology, Radiation Laboratory Series, No. 12, McGraw-Hill Book Company, 1949, [online], available: https://books.google.com.eg/books?id=Fi42MwEACAAJ.
25. Nayeri, P., et al., System Design and Aperture Efficiency Analysis, Chapter 3, 49-78, John Wiley & Sons, Ltd, 2018, [online], available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118846728.ch3.
26. Mielenz, K. D., "Computation of fresnel integrals. II.," Journal of Research of the National Institute of Standards and Technology, Vol. 105, No. 4, 589-590, 2000.
doi:10.6028/jres.105.049 Google Scholar
27. Chou, H., Y. Liu, X. Dong, B. You, and L. Kuo, "Design of reflectarray antennas to achieve an optimum near-field radiation for RFID applications via the implementation of SDM procedure," Radio Science, Vol. 50, No. 4, 283-293, 2015.
doi:10.1002/2014RS005593 Google Scholar
28. Nayeri, P., F. Yang, and A. Z. Elsherbeni, System Design and Aperture Efficiency Analysis, 49-78, 2018.
29. He, J., H. Wymeersch, L. Kong, O. Silv’en, and M. Juntti, "Large intelligent surface for positioning in millimeter wave MIMO systems," Proc. IEEE VTC-Spring, 1-5, Antwerp, Belgium, May 2020. Google Scholar
30. Basar, E., M. Di Renzo, J. De Rosny, M. Debbah, M. Alouini, and R. Zhang, "Wireless communications through reconfigurable intelligent surfaces," IEEE Access, Vol. 7, 116753-116773, 2019.
doi:10.1109/ACCESS.2019.2935192 Google Scholar
31. Di Renzo, M., M. Debbah, D.-T. Phan-Huy, A. Zappone, M.-S. Alouini, C. Yuen, V. Sciancalepore, G. C. Alexandropoulos, J. Hoydis, H. Gacanin, J. de Rosny, A. Bounceur, G. Lerosey, and M. Fink, "Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come," EURASIP J. Wireless Commun. Netw., Vol. 2019, No. 1, 1-20, May 2019.
doi:10.1186/s13638-018-1318-8 Google Scholar
32. Liaskos, C., S. Nie, A. Tsioliaridou, A. Pitsillides, S. Ioannidis, and I. Akyildiz, "A new wireless communication paradigm through softwarecontrolled metasurfaces," IEEE Communications Magazine, Vol. 56, No. 9, 162-169, 2018.
doi:10.1109/MCOM.2018.1700659 Google Scholar
33. Zhang, H., J. Hu, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "Metaradar: Indoor localization by reconfigurable metamaterials," IEEE Transactions on Mobile Computing, Dec. 14, 2020. Google Scholar
34. Johnson, J. M. and V. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 39, No. 4, 7-21, 1997.
doi:10.1109/74.632992 Google Scholar
35. Ulichny, K., E. Levine, and H. Matzner, "Design of thinned antenna arrays," 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), 238-241, 2015.
doi:10.1109/APSAR.2015.7306197 Google Scholar