1. Joshi, S. and G. Moddel, "Rectennas at optical frequencies: How to analyze the response?," Journal of Applied Physics, Vol. 118, No. 8, 084503, 2015.
doi:10.1063/1.4929648 Google Scholar
2. Bagher, A. M., M. M. A. Vahid, and M. Mohsen, "Types of solar cells and application," American Journal of Optics and Photonics, Vol. 3, No. 5, 94-113, 2015.
doi:10.11648/j.ajop.20150305.17 Google Scholar
3. Eldin, A. H., M. Refaey, and A. Farghly, "A review on photovoltaic solar energy technology and its efficiency," 17th International Middle-East Power System Conference (MEPCON’15), at Mansoura University, Egypt, 1-7, 2015. Google Scholar
4. Sabaawi, A. M., C. C. Tsimenidis, and B. S. Sharif, "Analysis and modeling of infrared solar rectennas," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 19, No. 3, 9000208-9000208, 2013.
doi:10.1109/JSTQE.2012.2227686 Google Scholar
5. Moddel, G. and S. Grover, Rectenna Solar Cells, Springer, 2013.
doi:10.1007/978-1-4614-3716-1
6. Mescia, L. and A. Massaro, "New trends in energy harvesting from earth long-wave infrared emission," Advances in Materials Science and Engineering, Vol. 2014, 2014. Google Scholar
7. Grover, S. and G. Moddel, "Applicability of Metal/Insulator/Metal (MIM) diodes to solar rectennas," IEEE Journal of Photovoltaics, Vol. 1, No. 1, 78-83, 2011.
doi:10.1109/JPHOTOV.2011.2160489 Google Scholar
8. Di Garbo, C., P. Livreri, and G. Vitale, "Review of infrared nanoantennas for energy harvesting," International Conference on Modern Electrical Power Engineering (ICMEPE-2016), 2016. Google Scholar
9. Zhu, Z., S. Joshi, and G. Moddel, "High performance room temperature rectenna IR detectors using graphene geometric diodes," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 20, No. 6, 70-78, 2014.
doi:10.1109/JSTQE.2014.2318276 Google Scholar
10. Gadalla, M. N., M. Abdel-Rahman, and A. Shamim, "Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification," Scientific Reports, Vol. 4, 4270, 2014. Google Scholar
11. Vandenbosch, G. A. and Z. Ma, "Upper bounds for the solar energy harvesting efficiency of nano-antennas," Nano Energy, Vol. 1, No. 3, 494-502, 2012.
doi:10.1016/j.nanoen.2012.03.002 Google Scholar
12. Yan, S., B. Tumendemberel, X. Zheng, V. Volskiy, G. A. Vandenbosch, and V. V. Moshchalkov, "Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications," Solar Energy, Vol. 157, 259-262, 2017.
doi:10.1016/j.solener.2017.08.035 Google Scholar
13. Hussein, M., N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, "Design of flower-shaped dipole nano-antenna for energy harvesting," IET Optoelectronics, Vol. 8, No. 4, 167-173, 2014.
doi:10.1049/iet-opt.2013.0108 Google Scholar
14. El-Toukhy, Y. M., M. Hussein, M. F. O. Hameed, A. Heikal, M. Abd-Elrazzak, and S. Obayya, "Optimized tapered dipole nanoantenna as efficient energy harvester," Optics Express, Vol. 24, No. 14, A1107-A1122, 2016.
doi:10.1364/OE.24.0A1107 Google Scholar
15. Sallam, M. O., G. A. Vandenbosch, G. G. Gielen, and E. A. Soliman, "Novel wire-grid nano-antenna array with circularly polarized radiation for wireless optical communication systems," Journal of Lightwave Technology, Vol. 35, No. 21, 4700-4706, 2017.
doi:10.1109/JLT.2017.2751674 Google Scholar
16. Zhao, H., H. Gao, T. Cao, and B. Li, "Efficient full-spectrum utilization, reception and conversion of solar energy by broad-band nanospiral antenna," Optics Express, Vol. 26, No. 2, A178-A191, 2018.
doi:10.1364/OE.26.00A178 Google Scholar
17. Elsaid, M., K. R. Mahmoud, M. F. O. Hameed, S. Obayya, and M. Hussein, "Broadband directional rhombic nanoantenna for optical wireless communications systems," JOSA B, Vol. 37, No. 4, 1183-1189, 2020.
doi:10.1364/JOSAB.383458 Google Scholar
18. Ranga, R., Y. Kalra, and K. Kishor, "“Petal shaped nanoantenna for solar energy harvesting," Journal of Optics, Vol. 22, No. 3, 035001, 2020. Google Scholar
19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.
20. Kotter, D. K., S. D. Novack, W. Slafer, and P. Pinhero, "Theory and manufacturing processes of solar nanoantenna electromagnetic collectors," Journal of Solar Energy Engineering, Vol. 132, No. 1, 011014, 2010.
doi:10.1115/1.4000577 Google Scholar
21. Wei, C., S. P. Lewis, E. Mele, and A. M. Rappe, "Reciprocity theorems and pseudoelectric fields for ab initio force calculations," Physical Review B, Vol. 55, No. 23, 15356, 1997.
doi:10.1103/PhysRevB.55.15356 Google Scholar
22. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.
23. Obayya, S., N. F. F. Areed, M. F. O. Hameed, and M. H. Abdelrazik, "Optical nano-antennas for energy harvesting," Innovative Materials and Systems for Energy Harvesting Applications, 26-62, IGI Global, 2015. Google Scholar
24. Soliman, E. A., M. O. Sallam, and G. A. Vandenbosch, "Plasmonic grid array of gold nanorods for point-to-point optical communications," Journal of Lightwave Technology, Vol. 32, No. 24, 4898-4904, 2014.
doi:10.1109/JLT.2014.2369493 Google Scholar
25. Costa, J. R. and J. Guterman, "Introduction to antenna and near-field simulation in CST microwave studio software," IEEE Communication Society, Portugal Chapter, 2010. Google Scholar
26. Clemens, M. and T. Weiland, "Discrete electromagnetism with the finite integration technique — Abstract," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 79-80, 2001.
doi:10.1163/156939301X00661 Google Scholar
27. "C. S. T. Studio Suite,", in ed: https://www.cst.com, 2016.
doi:10.1163/156939301X00661 Google Scholar
28. Paul, L. C., M. S. Hosain, S. Sarker, M. H. Prio, M. Morshed, and A. K. Sarkar, "The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna," American Journal of Networks and Communications, Vol. 4, No. 3, 54-58, 2015.
doi:10.11648/j.ajnc.20150403.16 Google Scholar