Vol. 110
Latest Volume
All Volumes
PIERC 166 [2026] PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-02-27
Tunable Triple Band-Notched UWB Antenna Using Single EBG and Varactor Diode
By
Progress In Electromagnetics Research C, Vol. 110, 181-195, 2021
Abstract
In this paper, a UWB monopole antenna with triple band-notch characteristics using single TBMV-EBG (Triple band multi-via electromagnetic bandgap) unit cell is proposed and demonstrated. The antenna with a fork-type radiating patch with TBMV-EBG is simulated using Ansys HFSS. Measurement results show triple band-notches at 3.39, 5.78, and 8.60 GHz, respectively, which are in good agreement with simulation results. The proposed antenna has bi-directional pattern in E-plane and omnidirectional pattern in H-plane. Moreover, tunable characteristics of the proposed antenna using a single varactor diode are also presented. By changing the capacitance of varactor, the band-notched antenna is effectively tuned from 2.69-3.46, 5.71-7.84, and 8.40-8.50 GHz. The same antenna structure can be operated at different band notching modes depending upon the varactor's capacitance. Therefore, the proposed UWB antenna will prove to be a promising candidate wherein multi-band rejections using single TBMV-EBG unit cell and reconfiguration using one varactor diode are desirable.
Citation
Vijay Ramesh Kapure, Pramod P. Bhavarthe, and Surendra S. Rathod, "Tunable Triple Band-Notched UWB Antenna Using Single EBG and Varactor Diode," Progress In Electromagnetics Research C, Vol. 110, 181-195, 2021.
doi:10.2528/PIERC21012204
References

1. Li, W., X. W. Shi, and Y. Q. Hei, "Novel planar UWB monopole antenna with triple band-notched characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 08, 1094-1098, Oct. 2009.        Google Scholar

2. Nguyen, T. D., D. H. Lee, and H. C. Park, "Design and analysis of compact printed triple band-notched UWB antenna," IEEE Antennas Wireless Propag. Lett., Vol. 10, 403-406, Apr. 2011.
doi:10.1109/LAWP.2011.2147270        Google Scholar

3. Sarkar, D., K. V. Srivastava, and K. Saurav, "A compact microstrip-fed triple band-notched UWB monopole antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, No. 01, 396-399, Mar. 2014.
doi:10.1109/LAWP.2014.2306812        Google Scholar

4. Liu, W. and T. Jiang, "Design and analysis of a tri-band notch UWB monopole antenna," 2016 Progress in Electromagnetic Research Symposium (PIERS), 2039-2041, Shanghai, China, Aug. 8–11, 2016.        Google Scholar

5. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 2174, 2017.
doi:10.3390/s17102174        Google Scholar

6. Rahman, M. and J.-D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for iot applications utilizing RSRR and RCSRR," Sensors, Vol. 18, No. 3, 911, 2018.
doi:10.3390/s18030911        Google Scholar

7. Mandal, T. and S. Das, "Design of dual notch band UWB printed monopole antenna using electromagnetic-bandgap structure," Microwave and Optical Technology Letters, Vol. 56, No. 9, 2195-2199, Sept. 2014.
doi:10.1002/mop.28526        Google Scholar

8. Jaglan, N., B. K. Kanaujia, S. D. Gupta, and S. Srivastava, "Design and development of an efficient EBG structures based band notched UWB circular monopole antenna," Wireless Personal Communication, Vol. 96, No. 04, 5757-5783, Oct. 2017.
doi:10.1007/s11277-017-4446-2        Google Scholar

9. Yang, Y., Y. Yin, A. Sun, and S. Jing, "Design of a UWB wide-slot antenna with 5.2-/5.8-GHz dual notched bands using modified electromagnetic-bandgap structures," Microwave and Optical Technology Letters, Vol. 54, No. 4, 1069-1074, Apr. 2012.
doi:10.1002/mop.26672        Google Scholar

10. Peng, L. and C. Ruan, "Design and time-domain analysis of compact multi-band-notched UWB antennas with EBG structures," Progress In Electromagnetics Research B, Vol. 47, 339-357, 2013.
doi:10.2528/PIERB12113012        Google Scholar

11. Xu, F., Z. X. Wang, X. Chen, and X.-A. Wang, "Dual band-notched UWB antenna based on spiral electromagnetic-bandgap structure," Progress In Electromagnetics Research B, Vol. 39, 393-409, 2012.
doi:10.2528/PIERB12021607        Google Scholar

12. Peng, L. and C. Ruan, "UWB band-notched monopole antenna design using electromagnetic-bandgap structures," IEEE Trans. Microw. Theory Tech., Vol. 59, No. 4, 1074-1081, Apr. 2011.
doi:10.1109/TMTT.2011.2114090        Google Scholar

13. Yazdi, M. and N. Komjani, "Design of a band-notched UWB monopole antenna by means of an EBG structure," IEEE Antennas Wireless Propag. Lett., Vol. 10, 170-173, Feb. 2011.
doi:10.1109/LAWP.2011.2116150        Google Scholar

14. Jaglan, N., S. D. Gupta, B. K. Kanaujia, and S. Srivastava, "Band notched UWB circular monopole antenna with inductance enhanced modified mushroom EBG structures," Wireless Personal Communications, Vol. 24, No. 2, 383-393, 2018.        Google Scholar

15. Bhavarthe, P. P., S. S. Rathod, and K. T. V. Reddy, "Compact dual band gap electromagnetic bandgap structure," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 596-600, Jan. 2016.
doi:10.1109/TAP.2018.2874702        Google Scholar

16. Trimukhe, M. A. and B. G. Hogade, "Compact ultra-wideband antenna with triple band notch characteristics using EBG structures," Progress In Electromagnetic Research C, Vol. 93, 65-77, 2019.
doi:10.2528/PIERC19040908        Google Scholar

17. Sievenpiper, D., L. Zhang, Romulo, J. Broas, N. Alexopolous, and E. Yablonovith, "High impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microw. Theory Tech., Vol. 47, No. 11, 2059-2074, Nov. 1999.
doi:10.1109/22.798001        Google Scholar

18. Yang, F. and Y. Rahmat-Samii, "Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2936-2946, Oct. 2003.
doi:10.1109/TAP.2003.817983        Google Scholar

19. Li, T., H. Zhai, L. Li, C. Liang, and Y. Han, "Compact UWB antenna with tunable band-notched characteristic based on microstrip open-loop resonator," IEEE Antennas Wireless Propag. Lett., Vol. 11, 1584-1587, Dec. 2012.
doi:10.1109/LAWP.2012.2234718        Google Scholar

20. Wu, W., Y.-B. Li, R.-Y. Wu, C.-B. Shi, and T.-J. Cui, "Band-notched UWB antenna with switchable and tunable performance," International Journal of Antennas and Propagation, Vol. 2016, 1-6, Jun. 2016.        Google Scholar

21. Tang, M.-C., H. Wang, T. Deng, and R. W. Ziolkowski, "Compact planar ultra-wideband antennas with continuously tunable, independent band-notched filters," IEEE Trans. Antennas Propag., Vol. 64, No. 8, 3292-3301, May 2016.
doi:10.1109/TAP.2016.2570254        Google Scholar

22. Mohamed, H. A., A. S. Elkorany, S. A. Saad, and D. A. Saleeb, "New simple flower shaped reconfigurable band-notched UWB antenna using single varactor diode," Progress In Electromagnetic Research C, Vol. 76, 197-206, Aug. 2017.
doi:10.2528/PIERC17061507        Google Scholar

23. Hua, C., Y. Lu, and T. Liu, "UWB heart-shaped planar monopole antenna with a reconfigurable notched band," Progress In Electromagnetics Research Letters, Vol. 65, 123-130, 2017.
doi:10.2528/PIERL16120203        Google Scholar

24. Nejatijahromi, M., M. U. Rahman, and M. Naghshvarianjahromi, "Continuously tunable WiMax band-notched UWB antenna with fixed WLAN notched band," Progress In Electromagnetics Research Letters, Vol. 75, 97-103, 2018.
doi:10.2528/PIERL18010819        Google Scholar

25. Nejatijahromi, M., M. Naghshvarianjahromi, and M. Rahman, "Compact CPW fed switchable UWB antenna as an antenna filter at narrow-frequency bands," Progress In Electromagnetics Research C, Vol. 81, 199-209, 2018.
doi:10.2528/PIERC18010818        Google Scholar

26. Hua, C. and Y. Lu, "Compact UWB bandpass filter with a reconfigurable notched band," Int. J. RF Microwave Comput. Aided Eng., 1-7, Nov. 2017.        Google Scholar

27. Shome, P. P., T. Khan, and R. H. Laskar, "CSRR-loaded UWB monopole antenna with electronically tunable triple band-notch characteristics for cognitive radio applications," Microw. Opt. Technol Lett., 1-11, Dec. 2019.        Google Scholar

28. Rahman, M., M. NagshvarianJahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, No. 2, 158, 2019.
doi:10.3390/electronics8020158        Google Scholar

29. Rahman, M., A. Haider, and M. Naghshvarianjahromi, "A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas," IEEE Antennas Wireless Propag. Lett., Vol. 19, 482-486, Mar. 2020.
doi:10.1109/LAWP.2020.2972025        Google Scholar

30. Kingsly, S., D. Thangarasu, et al. "Tunable band-notched high selective UWB filtering monopole antenna," IEEE Trans. Antennas Propag., Vol. 67, No. 8, 5658-5661, 2019.
doi:10.1109/TAP.2019.2920997        Google Scholar

31. Trimukhe, M. A. and B. G. Hogade, "Compact UWB antenna with tunable band-notch characteristics using varactor diode," Progress In Electromagnetics Research C, Vol. 97, 15-28, 2019.
doi:10.2528/PIERC19081801        Google Scholar

32. Kapure, V., R. P. P. Bhavarthe, and S. S. Rathod, "A switchable triple-band notched UWB antenna using compact multi-via electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 104, 201-214, 2020.
doi:10.2528/PIERC20052302        Google Scholar

33. Skyworks "SMV 123x series: Hyperabrupt function tuning varactors," Datasheet.        Google Scholar