Vol. 112
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-04-22
DOA Estimation of Mixture Signals Based on the PSA
By
Progress In Electromagnetics Research C, Vol. 112, 1-10, 2021
Abstract
The problem of direction of arrival (DOA) estimation based on a polarization sensitive array (PSA) is considered in this paper. In the environment of the mixture signal, a novel DOA estimation for both the independent signals and the coherent signals is proposed. The process of estimation is divided into two steps. First, the root-multiple signal classification algorithm is employed to estimate the DOAs of the independent signals. Then, the data covariance matrix which only contains the information of the coherent signals is estimated with improved vector reconstruction technique. Theoretical analysis and simulation results show that the proposed method can expand the array aperture and has small computation load as well as excellent estimation performance.
Citation
Wen Dong Qianrong Lu Siyuan Wu Shujie Lei Bin Pu , "DOA Estimation of Mixture Signals Based on the PSA," Progress In Electromagnetics Research C, Vol. 112, 1-10, 2021.
doi:10.2528/PIERC21021502
http://www.jpier.org/PIERC/pier.php?paper=21021502
References

1. Gong, S., et al., "Polarization sensitive array based physical-layer security," IEEE Transactions on Vehicular Technology, Vol. 67, No. 5, 3964-3981, 2017.
doi:10.1109/TVT.2017.2773710

2. Ebihara, S., et al., "Improved discrimination of subsurface targets using a polarization-sensitive directional borehole radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6429-6443, 2016.
doi:10.1109/TGRS.2016.2585178

3. Wang, K., et al., "Angle-polarization estimation for coherent sources with linear tripole sensor arrays," Sensors, Vol. 16, No. 2, 248, 2016.
doi:10.3390/s16020248

4. Wong, K. T., et al., "Electrically “Long” dipoles in a collocated/orthogonal triad — For direction finding and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6057-6067, 2017.
doi:10.1109/TAP.2017.2748183

5. Yang, D., et al., "Direction-of-arrival estimation based on phase modal space for a uniform circular acoustic vector-sensor array," Shengxue Xuebao/acta Acustica, Vol. 39, No. 1, 19-26, 2014.

6. Zheng, G., "Two-dimensional DOA estimation for polarization sensitive array consisted of spatially spread crossed-dipole," IEEE Sensors Journal, 1-1, 2018.

7. Guan, D., et al., "Broadband high gain SIW cavity-backed circular polarized array antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1493-1497, 2016.
doi:10.1109/TAP.2016.2521904

8. Miron, S., N. L. Bihan, and J. I. Maes, "High resolution vector-sensor array processing using quaternions," IEEE/SP 13th Workshop on Statistical Signal Processing, 2005.

9. Miron, S., N. L. Bihan, and J. I. Maes, "High resolution vector-sensor array processing based on biquaternions," Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1077-1080, 2006.

10. Miron, S., N. L. Bihan, and J. I. Mars, "Quaternion-MUSIC for vector-sensor array processing," IEEE Transactions on Signal Processing, Vol. 54, No. 4, 1218-1229, 2006.
doi:10.1109/TSP.2006.870630

11. Schutte, H. D. and J. Wenzel, "Hypercomplex numbers in digital signal processing," IEEE International Symposium on Circuits and Systems, Vol. 2, 1557-1560, 1990.
doi:10.1109/ISCAS.1990.112431

12. Diao, M. and C. L. An, "Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor," Journal of Systems Engineering and Electronics, Vol. 23, No. 4, 481-487, 2012.
doi:10.1109/JSEE.2012.00061

13. Molaei, A. M., B. Zakeri, and S. Andargoli, "Two-dimensional DOA estimation for multipath environments by accurate separation of signals using K-medoids clustering," IET Communications, Vol. 13, No. 9, 1141-1147, 2019.
doi:10.1049/iet-com.2018.5798

14. Molaei, A. M., B. Zakeri, and S. Andargoli, "Efficient clustering of non-coherent and coherent components regardless of sources’ powers for 2D DOA estimation," Circuits Systems and Signal Processing, Vol. 6, 2020.

15. Choi, Y. H., "On conditions for the rank restoration in forward/backward spatial smoothing," IEEE Transactions on Signal Processing, Vol. 50, No. 11, 2900-2901, 2002.
doi:10.1109/TSP.2002.804075

16. Pan, J., et al., "An enhanced spatial smoothing technique with ESPRIT algorithm for direction of arrival estimation in coherent scenarios," IEEE Transactions on Signal Processing, Vol. 68, 3635-3643, 2020.
doi:10.1109/TSP.2020.2994514