1. Gong, S., C. Xing, S. Chen, et al. "Polarization sensitive array based physical-layer security," IEEE Transactions on Vehicular Technology, Vol. 67, No. 5, 3964-3981, 2017.
doi:10.1109/TVT.2017.2773710 Google Scholar
2. Ebihara, S., T. Kuroda, Y. Koresawa, et al. "Improved discrimination of subsurface targets using a polarization-sensitive directional borehole radar," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 11, 6429-6443, 2016.
doi:10.1109/TGRS.2016.2585178 Google Scholar
3. Wang, K., J. He, T. Shu, et al. "Angle-polarization estimation for coherent sources with linear tripole sensor arrays," Sensors, Vol. 16, No. 2, 248, 2016.
doi:10.3390/s16020248 Google Scholar
4. Wong, K. T., Y. Song, C. J. Fulton, et al. "Electrically “Long” dipoles in a collocated/orthogonal triad — For direction finding and polarization estimation," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 11, 6057-6067, 2017.
doi:10.1109/TAP.2017.2748183 Google Scholar
5. Yang, D., Z. Zhu, S. Shi, et al. "Direction-of-arrival estimation based on phase modal space for a uniform circular acoustic vector-sensor array," Shengxue Xuebao/acta Acustica, Vol. 39, No. 1, 19-26, 2014. Google Scholar
6. Zheng, G., "Two-dimensional DOA estimation for polarization sensitive array consisted of spatially spread crossed-dipole," IEEE Sensors Journal, 1-1, 2018. Google Scholar
7. Guan, D., C. Ding, Z. Qian, et al. "Broadband high gain SIW cavity-backed circular polarized array antenna," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 4, 1493-1497, 2016.
doi:10.1109/TAP.2016.2521904 Google Scholar
8. Miron, S., N. L. Bihan, and J. I. Maes, "High resolution vector-sensor array processing using quaternions," IEEE/SP 13th Workshop on Statistical Signal Processing, 2005. Google Scholar
9. Miron, S., N. L. Bihan, and J. I. Maes, "High resolution vector-sensor array processing based on biquaternions," Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 1077-1080, 2006. Google Scholar
10. Miron, S., N. L. Bihan, and J. I. Mars, "Quaternion-MUSIC for vector-sensor array processing," IEEE Transactions on Signal Processing, Vol. 54, No. 4, 1218-1229, 2006.
doi:10.1109/TSP.2006.870630 Google Scholar
11. Schutte, H. D. and J. Wenzel, "Hypercomplex numbers in digital signal processing," IEEE International Symposium on Circuits and Systems, Vol. 2, 1557-1560, 1990.
doi:10.1109/ISCAS.1990.112431 Google Scholar
12. Diao, M. and C. L. An, "Direction finding of coexisted independent and coherent signals using electromagnetic vector sensor," Journal of Systems Engineering and Electronics, Vol. 23, No. 4, 481-487, 2012.
doi:10.1109/JSEE.2012.00061 Google Scholar
13. Molaei, A. M., B. Zakeri, and S. Andargoli, "Two-dimensional DOA estimation for multipath environments by accurate separation of signals using K-medoids clustering," IET Communications, Vol. 13, No. 9, 1141-1147, 2019.
doi:10.1049/iet-com.2018.5798 Google Scholar
14. Molaei, A. M., B. Zakeri, and S. Andargoli, "Efficient clustering of non-coherent and coherent components regardless of sources’ powers for 2D DOA estimation," Circuits Systems and Signal Processing, Vol. 6, 2020. Google Scholar
15. Choi, Y. H., "On conditions for the rank restoration in forward/backward spatial smoothing," IEEE Transactions on Signal Processing, Vol. 50, No. 11, 2900-2901, 2002.
doi:10.1109/TSP.2002.804075 Google Scholar
16. Pan, J., M. Sun, Y. Wang, et al. "An enhanced spatial smoothing technique with ESPRIT algorithm for direction of arrival estimation in coherent scenarios," IEEE Transactions on Signal Processing, Vol. 68, 3635-3643, 2020.
doi:10.1109/TSP.2020.2994514 Google Scholar