Vol. 102
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-04-14
Asymmetric Impedance Vibrator for Multi-Band Communication Systems
By
Progress In Electromagnetics Research M, Vol. 102, 81-89, 2021
Abstract
A numeric-analytical solution of a problem concerning an impedance vibrator with local asymmetric excitation is derived in the thin-wire approximation. Solution correctness is confirmed by satisfactory agreement of numerical and experimental results from well-known literary sources. Based on the optimization modeling, the design of the impedance antenna characterized by three resonant frequencies intended for mobile communications operating in GSM 900, GSM 1800, and WiMAX ranges is developed. The analysis of basic electrodynamic characteristics of the vibrator antenna has proved the possibility of practical applications of this antenna for phones, portable radio stations, electronic gadgets, and base stations.
Citation
Mikhail Nesterenko Viktor A. Katrich Sergey L. Berdnik Oleksandr M. Dumin Yevhenii O. Antonenko , "Asymmetric Impedance Vibrator for Multi-Band Communication Systems," Progress In Electromagnetics Research M, Vol. 102, 81-89, 2021.
doi:10.2528/PIERM21031207
http://www.jpier.org/PIERM/pier.php?paper=21031207
References

1. Chen, Z. N., Antennas for Portable Devices, Wiley, Chichester, England, 2007.

2. Fujimoto, K. and J. R. James, Mobile Antenna Systems Handbook, Artech House, London, England, 2008.

3. Zhang, Z., Antenna Design for Mobile Devices, Wiley, London, England, 2017.

4. Geissler, M. and D. Heberling, "An optimized antenna for mobile phones," Proceedings IEEE AP-S International Symposium, Vol. 1, 118-121, 1998.

5. Liu, D., "A dual-band antenna for cellular applications," Proceedings IEEE AP-S International Symposium, Session 28, –, , Session 28, 786-789, 1998.

6. Nesterenko, M. V. and V. A. Katrch, "Thin vibrators with arbitrary surface impedance as a handset antennas," Proceedings 5th European Personal Mobile Communications Conference, 16-20, 2003.

7. Zhou, G., "A non-uniform pitch dual band helix antenna," Proceedings IEEE AP-S International Symposium, Vol. 1, 274-277, 2000.

8. Egorov, I. and Z. Ying, "A non-uniform helical antenna for dual-band cellular phones," Proceedings IEEE AP-S International Symposium, Vol. 2, 652-655, 2000.

9. Wong, K.-L. and S.-L. Chien, "Wide-band cylindrical monopole antenna for mobile phone," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2756-2758, 2005.
doi:10.1109/TAP.2005.851784

10. Zhou, G. and B. Yildirim, "A multi-band fixed cellular phone antenna," Proceedings IEEE AP-S International Symposium, Vol. 1, 112-115, 1999.

11. Odachi, N., S. Sekine, H. Shoki, and Y. Suzuki, "A rod antenna with a meander element for hand-held phone," Proceedings IEEE AP-S International Symposium, Vol. 3, 1682-1685, 2000.

12. Tung, H.-C., C.-Y. Fang, and K.-L. Wong, "Dual-band inverted-L monopole antenna for GSM/DCS mobile phone," Proceedings IEEE AP-S International Symposium, Vol. 3, 30-33, 2002.

13. Song, C., Y. Huang, J. Zhou, P. Carter, S. Yuan, Q. Xu, and Z. Fei, "Matching network elimination in broadband rectennas for high-efficiency wireless power transfer and energy harvesting," IEEE Trans. Industrial Electronics, Vol. 64, 3950-3961, 2017.
doi:10.1109/TIE.2016.2645505

14. Paramayudha, K., S. J. Chen, T. Kaufmann, W. Withayachumnankul, and C. Fumeaux, "Triple-band reconfigurable low-profile monopolar antenna with independent tenability," IEEE Open J. Antennas Propag., Vol. 1, 47-56, 2020.
doi:10.1109/OJAP.2020.2977662

15. Hu, W., T. Feng, S. Gao, L. Wen, Q. Luo, P. Fei, Y. Liu, and X. Yang, "Wideband circularly polarized antenna using single-arm coupled asymmetric dipoles," IEEE Trans. Antennas Propag., Vol. 68, 5104-5113, 2020.
doi:10.1109/TAP.2020.2975275

16. Luo, Y. and Y. Liu, "Nona-band antenna with small nonground portion for full-view display mobile phones," IEEE Trans. Antennas Propag., Vol. 68, 7624-7629, 2020.
doi:10.1109/TAP.2020.2989874

17. Wang, S. and Z. Du, "A dual-antenna system for LTE/WWAN/WLAN/WiMAX smartphone applications," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1443-1446, 2015.
doi:10.1109/LAWP.2015.2411253

18. Tang, R. and Z. Du, "Wideband monopole without lumped elements for octa-band narrow-frame LTE smartphone," IEEE Antennas Wireless Propag. Lett., Vol. 16, 720-723, 2017.
doi:10.1109/LAWP.2016.2600761

19. Yang, Y., Z. Zhao, W. Yang, Z. Nie, and Q.-H. Liu, "Compact multimode monopole antenna for metal-rimmed mobile phones," IEEE Trans. Antennas Propag., Vol. 65, No. 5, 2297-2304, 2017.
doi:10.1109/TAP.2017.2679059

20. Liu, Y., P. Liu, Z. Meng, L. Wang, and Y. Li, "A planar printed nona-band loop-monopole reconfigurable antenna for mobile handsets," IEEE Antennas Wireless Propag. Lett., Vol. 17, 1575-1579, 2018.
doi:10.1109/LAWP.2018.2856459

21. Huang, D., Z. Du, and Y. Wang, "A quad-antenna system for 4G/5G/GPS metal frame mobile phones," IEEE Antennas Wireless Propag. Lett., Vol. 18, 1586-1590, 2019.
doi:10.1109/LAWP.2019.2924322

22. Tan, Q. and F.-C. Chen, "Triband circularly polarized antenna using a single patch," IEEE Antennas Wireless Propag. Lett., Vol. 19, 2013-2017, 2020.
doi:10.1109/LAWP.2020.3014961

23. Moreno, R. M., J. Kurvinen, J. Ala-Laurinaho, A. Khripkov, J. Ilvonen, J. van Wonterghem, and V. Viikari, "Dual-polarized mm-wave endfire chain-slot antenna for mobile devices," IEEE Trans. Antennas Propag., Vol. 69, 25-34, 2021.
doi:10.1109/TAP.2020.3001434

24. King, R. W. P. and T. T. Wu, "The cylindrical antenna with arbitrary driving point," IEEE Trans. Antennas Propag., Vol. 13, 710-718, 1965.
doi:10.1109/TAP.1965.1138531

25. Popovic, B. D., "On polynomial approximation of current along thin asymmetrical cylindrical dipoles," IEEE Trans. Antennas Propagat., Vol. 19, 117-120, 1971.
doi:10.1109/TAP.1971.1139879

26. Wang, Y., S. Xu, and D. H. Werner, "1 bit dual-polarized reconfigurable transmitarray antenna using asymmetric dipole elements with parasitic bypass dipoles," IEEE Trans. Antennas Propag., Vol. 69, 1188-1192, 2021.
doi:10.1109/TAP.2020.3005713

27. Nesterenko, M. V., V. A. Katrich, Y. M. Penkin, V. M. Dakhov, and S. L. Berdnik, Thin Impedance Vibrators. Theory and Applications, Springer Science+Business Media, New York, 2011.

28. Nesterenko, M. V., V. A. Katrich, S. L. Berdnik, Yu. M. Penkin, and V. M. Dakhov, "Application of the generalized method of induced EMF for investigation of characteristics of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 26, 149-178, 2010.
doi:10.2528/PIERB10052902

29. Nesterenko, M. V., "Analytical methods in the theory of thin impedance vibrators," Progress In Electromagnetics Research B, Vol. 21, 299-328, 2010.

30. King, R. W. P. and G. S. Smith, Antennas in Matter, MIT Press, Cambridge, USA, 1981.

31. Bretones, R., R. G. Martin, and I. S. Garcıa, "Time-domain analysis of magnetic-coated wire antennas," IEEE Trans. Antennas Propag., Vol. 43, 591-596, 1995.
doi:10.1109/8.387174

32. Berdnik, S. L., V. A. Katrich, M. V. Nesterenko, Yu. M. Penkin, and D. Yu. Penkin, "Radiation and scattering of electromagnetic waves by a multielement vibrator-slot structure in a rectangular waveguide," IEEE Trans. Antennas Propag., Vol. 63, No. 9, 4256-4259, 2015.
doi:10.1109/TAP.2015.2453015

33. Bovkoon, V. P., I. N. Bubnov, A. A. Gridin, and I. N. Zhouk, "Short multifrequency vibrator antenna. II. Engineering calculation of short thick vibrators," Radio Physics and Radio Astronomy, Vol. 18, No. 2, 161-168, 2013 (in Russian).

34. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Electrodynamic characteristics of horizontal impedance vibrator located over a finite-dimensional perfectly conducting screen," Progress In Electromagnetics Research B, Vol. 63, 275-288, 2015.
doi:10.2528/PIERB15043003

35. Yeliseyeva, N. P., S. L. Berdnik, V. A. Katrich, and M. V. Nesterenko, "Directional and polarization radiation characteristics of a horizontal impedance vibrator located above a rectangular screen," Journal of Communications Technology and Electronics, Vol. 61, No. 2, 99-111, 2016.
doi:10.1134/S1064226916010046

36. Yeliseyeva, N. P., V. A. Katrich, M. V. Nesterenko, and S. L. Berdnik, "Characteristics of resonant impedance dipole placed inside dihedral corner reflector," Proceedings XXIIIth Intern. Seminar on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 60-63, 2018.