1. Genovesi, S., F. Costa, and A. Monorchio, "Low-profile array with reduced radar cross section by using hybrid frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2327-2335, May 2012.
doi:10.1109/TAP.2012.2189701 Google Scholar
2. Jia, Y., Y. Liu, H. Wang, and S. Gong, "Low RCS microstrip antenna using polarization-dependent frequency selective surface," Electronics Letters, Vol. 50, 978-979, Jul. 2014. Google Scholar
3. Joozdani, M. Z., M. K. Amirhosseini, and A. Abdolali, "Wideband radar cross-section reduction of patch array antenna with miniaturized hexagonal loop frequency selective surface," Electronics Letters, Vol. 52, No. 9, 767-768, Apr. 2016.
doi:10.1049/el.2016.0336 Google Scholar
4. Paquay, M., J. C. Iriarte, I. Ederra, et al. "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, Dec. 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
5. Galarregui, J. C. I., A. T. Pereda, J. L. M. de Falcon, et al. "Broadband radar cross-section reduction using AMC technology," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6136-6143, Dec. 2013.
doi:10.1109/TAP.2013.2282915 Google Scholar
6. Esmaeli, S. H. and S. H. Sedighy, "Wideband radar cross-section reduction by AMC," Electronics Letters, Vol. 52, No. 1, 70-71, Jan. 2016.
doi:10.1049/el.2015.3515 Google Scholar
7. Su, J., Y. Lu, H. Zhang, et al. "Ultra-wideband, wide angle and polarization-insensitive specular reflection reduction by metasurface based on parameter-adjustable meta-atoms," Scientific Reports, 11 pages, Feb. 2017. Google Scholar
8. Liu, Y., Y. Hao, K. Li, et al. "Radar cross section reduction of a microstrip based on polarization conversion," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 80-83, 2016.
doi:10.1109/LAWP.2015.2430363 Google Scholar
9. Liu, Y., K. Li, Y. Jia, et al. "Wideband RCS reduction of a slot array antenna using polarization conversion metasurfaces polarization conversion metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 1, 326-331, 2016.
doi:10.1109/TAP.2015.2497352 Google Scholar
10. Su, J., C. Kong, Z. Li, et al. "Wideband diffuse scattering and RCS reduction of microstrip antenna array based on coding metasurface," Electronics Letters, Vol. 53, No. 16, 1088-1090, Aug. 2017.
doi:10.1049/el.2017.1656 Google Scholar
11. Su, J., H. He, Z. Li, et al. "Uneven-layered coding metamaterial tile for ultra-wideband RCS reduction and diffuse scattering," Scientific Reports, 9 pages, May 2018. Google Scholar
12. Liu, X., J. Gao, L. Xu, et al. "A coding diffuse metasurface for RCS reduction," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 724-727, 2017.
doi:10.1109/LAWP.2016.2601108 Google Scholar
13. Han, Z., W. Song, and X. Sheng, "In-band RCS reduction and gain enhancement for a patch antenna array by using a 1-D periodic metasurface reflector," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4269-4274, Jun. 2019.
doi:10.1109/TAP.2019.2905989 Google Scholar
14. Rajabalipanah, H. and A. Abdolali, "Ultrabroadband monostatic/bistatic RCS reduction via high-entropy phase-encoded polarization conversion metasurfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1233-1237, Jun. 2019.
doi:10.1109/LAWP.2019.2913465 Google Scholar
15. Yin, L., P. Yang, Y.-Y. Gan, F. Yang, S. Yang, and Z. Nie, "A low cost, low in-band RCS microstrip phased-array antenna with integrated 2-bit phase shifter," IEEE Transactions on Antennas and Propagation, 2020. Google Scholar
16. Yang, H., et al. "Low in-band-RCS antennas based on anisotropic metasurface using a novel integration method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 3, 1239-1248, Mar. 2021.
doi:10.1109/TAP.2020.3016161 Google Scholar
17. Han, Y., S. Gong, J. Wang, Y. Li, S. Qu, and J. Zhang, "Reducing RCS of patch antennas via dispersion engineering of metamaterial absorbers," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1419-1425, Mar. 2020.
doi:10.1109/TAP.2019.2925275 Google Scholar
18. Han, Y., L. Zhu, Y. Bo, W. Che, and B. Li, "Novel low-RCS circularly polarized antenna arrays via frequency-selective absorber," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 287-296, Jan. 2020.
doi:10.1109/TAP.2019.2939845 Google Scholar
19. CST STUDIO SUITE®, CST AG, Germany, www.cst.com. Google Scholar
20. Zhang, C., J. Gao, X. Cao, L. Xu, and J. Han, "Low scattering microstrip antenna array using coding artificial magnetic conductor ground," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 869-872, May 2018, doi: 10.1109/LAWP.2018.2820220.
doi:10.1109/LAWP.2018.2820220 Google Scholar
21. Chen, Q., M. Guo, D. Sang, Z. Sun, and Y. Fu, "RCS reduction of patch array antenna using anisotropic resistive metasurface," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 6, 1223-1227, Jun. 2019, doi: 10.1109/LAWP.2019.2913104.
doi:10.1109/LAWP.2019.2913104 Google Scholar
22. Cheng, Y.-F., C. Liao, G. -F. Gao, L. Peng, and X. Ding, "Performance enhancement of a planar slot phased array by using dual-mode SIW cavity and coding metasurface," IEEE Transactions on Antennas and Propagation, 2021. Google Scholar
23. Zarbakhsh, S., M. Akbari, F. Samadi, and A. Sebak, "Broadband and high-gain circularly-polarized antenna with low RCS," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 1, 16-23, Jan. 2019.
doi:10.1109/TAP.2018.2876234 Google Scholar