Vol. 103
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-07-08
Electrically Small Radiation Pattern Reconfigurable Antenna with Expanded Bandwidth and High Front-to-Back Ratio
By
Progress In Electromagnetics Research M, Vol. 103, 103-113, 2021
Abstract
This paper presents an electrically small antenna (ka = 0.87) with ultra-low-profile 0.005λ0 and six reconfigurable endfire radiation patterns, which cover the entire 360° azimuth plane. An equivalent magnetic dipole and six switchable equivalent electric dipoles form the six reconfigurable endfire radiation patterns by switching the ON/OFF states of six PIN diodes. The designing bright point is the dual side printed loop, that is, an Alford loop and six loaded circular arc stubs, which form the equivalent magnetic dipole. This technique can reduce the size by 77% compared with single side printed loop, expand the bandwidth, and produce a strong and uniform near magnetic field, which leads to a high F/B ratio. Compared with published pattern-reconfigurable ESAs with endfire radiation characteristics, the proposed antenna has highet F/B ratio about 35.6 dB, more switchable states and expanded bandwidth. In addition, the measured peak realized gain and radiation efficiency at 1.5 GHz are 3.52 dBi and 77.6%, respectively.
Citation
Hui-Fen Huang, and Hong-Long Bu, "Electrically Small Radiation Pattern Reconfigurable Antenna with Expanded Bandwidth and High Front-to-Back Ratio," Progress In Electromagnetics Research M, Vol. 103, 103-113, 2021.
doi:10.2528/PIERM21050602
References

1. Cidronali, A., S. Maddio, M. Passafiume, and G. Manes, "Car talk: Technologies for vehicle-to-roadside communications," IEEE Microw. Mag., Vol. 17, No. 11, 40-60, Nov. 2016.
doi:10.1109/MMM.2016.2600949

2. Li, Y. and K. Luk, "A multibeam end-fire magnetoelectric dipole antenna array for millimeter-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 2894-2904, Jul. 2016.
doi:10.1109/TAP.2016.2554601

3. Liu, F., Z. Zhang, W. Chen, Z. Feng, and M. F. Iskander, "An endfire beam-switchable antenna array used in vehicular environment," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 195-198, 2010.
doi:10.1109/LAWP.2010.2044973

4. Zhong, L., J. Hong, and H. Zhou, "A novel pattern-reconfigurable cylindrical dielectric resonator antenna with enhanced gain," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1253-1256, Dec. 2016.
doi:10.1109/LAWP.2015.2504127

5. Jin, G., M. Li, D. Liu, and G. Zeng, "A simple planar pattern-reconfigurable antenna based on arc dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1664-1668, Sept. 2018.
doi:10.1109/LAWP.2018.2862624

6. Zhang, T., S. Yao, and Y. Wang, "Design of radiation-pattern-reconfigurable antenna with four beams," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 183-186, 2015.
doi:10.1109/LAWP.2014.2360098

7. Sabapathy, T., M. Jusoh, R. B. Ahmad, M. R. Kamarudin, and P. J. Soh, "A ground-plane-truncated, broadly steerable Yagi-Uda patch array antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1069-1072, 2016.
doi:10.1109/LAWP.2015.2492620

8. Tang, M., Y. Duan, Z. Wu, X. Chen, M. Li, and R. W. Ziolkowski, "Pattern reconfigurable, vertically polarized, low-profile, compact, near-field resonant parasitic antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1467-1475, Mar. 2019.
doi:10.1109/TAP.2018.2883635

9. Ouyang, J., Y. M. Pan, and S. Y. Zheng, "Center-fed unilateral and pattern reconfigurable planar antennas with slotted ground plane," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 10, 5139-5149, Oct. 2018.
doi:10.1109/TAP.2018.2860046

10. Lim, S. and H. Ling, "Design of electrically small, pattern reconfigurable Yagi antenna," Electron. Lett., Vol. 43, No. 24, 1326-1327, Nov. 2007.
doi:10.1049/el:20072393

11. Tang, M., B. Zhou, and R. W. Ziolkowski, "Low-profile, electrically small, huygens source antenna with pattern-reconfigurability that covers the entire azimuthal plane," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 3, 1063-1072, Mar. 2017.
doi:10.1109/TAP.2016.2647712

12. Tang, M., B. Zhou, Y. Duan, X. Chen, and R. W. Ziolkowski, "Pattern-reconfigurable, flexible, wideband, directive, electrically small near-field resonant parasitic antenna," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2271-2280, May 2018.
doi:10.1109/TAP.2018.2814220

13. Wu, Z., M. Tang, M. Li, and R. W. Ziolkowski, "Ultralow-profile, electrically small, pattern-reconfigurable metamaterial-inspired huygens dipole antenna," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 3, 1238-1248, Mar. 2020.
doi:10.1109/TAP.2019.2925280

14. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.

15. Tang, M.-C., H. Wang, and R. W. Ziolkowski, "Design and testing of simple, electrically small, low-profile, Huygens source antennas with broadside radiation performance," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 11, 4607-4617, Nov. 2016.
doi:10.1109/TAP.2016.2606552

16. MACOM, Products: MA4GP907, [Online], Available: http://cdn.macom.com/datasheets/MA4GP907.pdf.