1. Noh, M. and D. L. Trumper, "Homopolar bearingless slice motor with flux-biasing halbach arrays," IEEE Transactions on Industrial Electronics, Vol. 67, No. 9, 7757-7766, 2020.
doi:10.1109/TIE.2019.2942512 Google Scholar
2. Zhang, W. Y. and H. Q. Zhu, "Radial magnetic bearings: An overview," Results in Physics, Vol. 7, 3756-3766, 2017.
doi:10.1016/j.rinp.2017.08.043 Google Scholar
3. Turk, N., N. Bulic, and W. Gruber, "Nonlinear control of a bearingless flux-switching slice motor with combined winding system," IEEE-Asme Transactions on Mechatronics, Vol. 25, No. 1, 152-163, 2020.
doi:10.1109/TMECH.2019.2950871 Google Scholar
4. Sun, X. D., Z. J. Jin, Y. F. Cai, et al. "Grey wolf optimization algorithm based state feedback control for a bearingless permanent magnet synchronous machine," IEEE Transactions on Power Electronics, Vol. 35, No. 12, 13631-13640, 2020.
doi:10.1109/TPEL.2020.2994254 Google Scholar
5. Wang, H. J. and F. X. Li, "Design consideration and characteristic investigation of modular permanent magnet bearingless switched reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4326-4337, 2020.
doi:10.1109/TIE.2019.2931218 Google Scholar
6. Yang, Z. B., C. L. Lu, X. D. Sun, et al. "Study on active disturbance rejection control of a bearingless induction motor based on an improved particle swarm optimization-genetic algorithm," IEEE Transactions on Transportation Electrification, Vol. 7, No. 2, 694-705, 2021.
doi:10.1109/TTE.2020.3031338 Google Scholar
7. Bu, W. S., X. W. Tu, C. X. Lu, et al. "Adaptive feedforward vibration compensation control strategy of bearingless induction motor," International Journal of Applied Electromagnetics and Mechanics, Vol. 63, No. 2, 199-215, 2020.
doi:10.3233/JAE-190092 Google Scholar
8. Yang, Z. B., C. Sun, X. D. Sun, et al. "An improved dynamic model for bearingless induction motor considering rotor eccentricity and load change," IEEE Transactions on Industrial Electronics, doi: 10.1109, 2021. Google Scholar
9. Chen, J. H., Y. Fujii, M. W. Johnson, et al. "Optimal design of the bearingless induction motor," IEEE Transactions on Industry Applications, Vol. 57, No. 2, 1375-1388, 2020.
doi:10.1109/TIA.2020.3044970 Google Scholar
10. Chiba, A. and J. Asama, "Influence of rotor skew in induction type bearingless motor," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4646-4649, 2012.
doi:10.1109/TMAG.2012.2198872 Google Scholar
11. Xu, X. P., Q. K. Han, Z. Y. Qin, et al. "Analytical methods for the radial electromagnetic vibration of stator in permanent magnet motors with an amorphous alloy core," Mechanical Systems and Signal Processing, doi: 10.1016, 2020. Google Scholar
12. Li, Z. Z., S. X. Zhou, G. Q. Zhang, et al. "Highly ductile and ultra-thick p-doped FeSiB amorphous alloys with excellent soft magnetic properties," Materials, doi: 10.3390, 2018. Google Scholar
13. Ou, J., Y. Z. Liu, P. Breining, et al. "Experimental study of the amorphous magnetic material for high-speed sleeve-free PM rotor application," IEEE Transactions on Industrial Electronics, Vol. 67, No. 6, 4422-4432, 2020.
doi:10.1109/TIE.2019.2931282 Google Scholar
14. Azuma, D., N. Ito, and M. Ohta, "Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials," Journal of Magnetism and Magnetic Materials, doi: 10.1016, 2020. Google Scholar
15. Liu, D. S., J. C. Li, R. K. Noubissi, et al. "Magnetic properties and vibration characteristics of amorphous alloy strip and its combination," IET Electric Power Applications, Vol. 13, No. 10, 1589-1597, 2019.
doi:10.1049/iet-epa.2019.0137 Google Scholar
16. Qiao, J., P. Yu, Y. X. Wu, et al. "Compact review of laser welding technologies for amorphous alloys," Metals, doi: 10.3390, 2020. Google Scholar
17. Tang, R. Y., W. M. Tong, and X. Y. Han, "Overview on amorphous alloy electrical machines and their key technologies," Chinese Journal of Electrical Engineering, Vol. 2, No. 1, 1-12, 2016. Google Scholar
18. Sun, X. D., L. Chen, H. B. Jiang, et al. "High-performance control for a bearingless permanent-magnet synchronous motor using neural network inverse scheme plus internal model controllers," IEEE Transactions on Industrial Electronics, Vol. 63, No. 6, 3479-3488, 2016.
doi:10.1109/TIE.2016.2530040 Google Scholar
19. Chen, J. H., Y. Fujii, M. W. Johnson, et al. "Optimal design of the bearingless induction motor for industrial applications," IEEE Transactions on Industry Applications, Vol. 57, No. 2, 1375-1388, 2021.
doi:10.1109/TIA.2020.3044970 Google Scholar
20. Chen, Y. P., W. S. Bu, and Y. K. Qiao, "Research on the speed sliding mode observation method of a bearingless induction motor," Energies, doi: 10.3390, 2021. Google Scholar
21. Yang, Z. B., J. L. Ji, X. D. Sun, et al. "Active disturbance rejection control for bearingless induction motor based on hyperbolic tangent tracking differentiator," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 8, No. 3, 2623-2633, 2020.
doi:10.1109/JESTPE.2019.2923793 Google Scholar
22. Wang, Y. C., Y. Zhang, A. Takeuchi, et al. "Magnetic influence of alloying elements in Fe-rich amorphous alloys studied by ab initio molecular dynamics simulations," IEEE Transactions on Magnetics, Vol. 51, No. 11, 1-4, 2015. Google Scholar
23. Chai, F., Z. Y. Li, L. Chen, et al. "Effect of cutting and slot opening on amorphous alloy core for high-speed switched reluctance motor," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-5, 2021.
doi:10.1109/TMAG.2020.3018255 Google Scholar
24. Ismagilov, F. R., L. Papini, V. E. Vavilov, et al. "Design and performance of a high-speed permanent magnet generator with amorphous alloy magnetic core for aerospace applications," IEEE Transactions on Industrial Electronics, Vol. 67, No. 3, 1750-1758, 2020.
doi:10.1109/TIE.2019.2905806 Google Scholar
25. Gao, L. Y., H. Zhang, L. B. Zeng, et al. "Rotor topology optimization of interior permanent magnet synchronous motor with high-strength silicon steel application," IEEE Transactions on Magnetics, Vol. 57, No. 2, 1-6, 2021. Google Scholar
26. Tong, W. M., S. H. Dai, S. N. Wu, et al. "Performance comparison between an amorphous metal PMSM and a silicon steel PMSM," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, 2019. Google Scholar
27. Chen, M., K. T. Chau, C. H. T. Lee, et al. "Design and analysis of a new axial-field magnetic variable gear using pole-changing permanent magnets," Progress In Electromagnetics Research, Vol. 153, 23-32, 2015.
doi:10.2528/PIER15072701 Google Scholar
28. Wen, Y., G. L. Li, Q. J. Wang, et al. "Modeling and analysis of permanent magnet spherical motors by a multitask gaussian process method and finite element method for output torque," IEEE Transactions on Industrial Electronics, Vol. 68, No. 9, 8540-8549, 2021.
doi:10.1109/TIE.2020.3018078 Google Scholar
29. Shi, Z., X. D. Sun, Y. F. Cai, et al. "Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2036-2044, 2020.
doi:10.1109/TEC.2020.2989438 Google Scholar
30. Najafi, A. and I. Iskender, "Comparison of core loss and magnetic flux distribution in amorphous and silicon steel core transformers," Electrical Engineering, Vol. 100, No. 2, 1125-1131, 2018.
doi:10.1007/s00202-017-0574-7 Google Scholar
31. Li, L. J., S. H. Li, G. M. Li, et al. "Design and performance prediction of switched reluctance motor with amorphous cores," Materials Research Innovations, Vol. 19, S328-S332, 2015.
doi:10.1179/1433075X13Y.0000000196 Google Scholar