Vol. 104
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-02
Analysis of Novel Eddy Current Damper for Multi-Ring Permanent Magnet Thrust Bearing
By
Progress In Electromagnetics Research M, Vol. 104, 13-22, 2021
Abstract
This paper deals with analyzing a novel eddy current damper for an axially magnetized multi-ring permanent magnet thrust bearing (MPMTB). Initially, the bearing is optimized for maximum axial force by selecting three general parameters (air gap, outer diameter of stator, and length) using a generalized optimization procedure. Then, the axial force of an optimized bearing is validated with the mathematical model results. Finally, the novel and conventional eddy current dampers (ECDs) for an optimized MPMTB are analyzed for damping forces and coefficients using three-dimensional (3D) finite element transient analysis in ANSYS. Based on the analysis results, the proposed novel structure could be selected to replace the conventional one for providing damping to MPMTB effectively without affecting the radial air gap between the rotor and stator rings.
Citation
Dhruv Deshwal Siddappa Iranna Bekinal Mrityunjay Doddamani , "Analysis of Novel Eddy Current Damper for Multi-Ring Permanent Magnet Thrust Bearing," Progress In Electromagnetics Research M, Vol. 104, 13-22, 2021.
doi:10.2528/PIERM21070107
http://www.jpier.org/PIERM/pier.php?paper=21070107
References

1. Yonnet, J. P., "Passive magnetic bearings with permanent magnets," IEEE Trans. Magn., Vol. 14, No. 5, 803-805, 1978.
doi:10.1109/TMAG.1978.1060019

2. Schweitzer, G., "Magnetic bearings-applications, concepts and theory," JSME International Journal Series III, Vol. 33, No. 1, 13-18, 1990.

3. Sotelo, G. G., R. Andrade, and A. C. Ferreira, "Magnetic bearing sets for a flywheel system," IEEE Trans. on Applied Super Conductivity, Vol. 17, No. 2, 2150-2153, 2007.
doi:10.1109/TASC.2007.899268

4. Le, Y., J. Fang, and J. Sun, "Design of a Halbach array permanent magnet damping system for high speed compressor with large thrust load," IEEE Trans. Magn., Vol. 51, No. 1, 1-9, 2015.

5. Mukhopadhaya, S. C., et al., "Fabrication of a repulsive-type magnetic bearing using a novel arrangement of permanent magnets for vertical-rotor suspension," IEEE Trans. Magn., Vol. 39, 3220-3222, 2003.
doi:10.1109/TMAG.2003.816727

6. Bekinal, S. I., S. Jana, and S. S. Kulkarni, "A hybrid (permanent magnet and foil) bearing set for complete passive levitation of high-speed rotors," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 231, 3679-3689, 2017.
doi:10.1177/0954406216652647

7. Bekinal, S. I., T. R. Anil, and S. Jana, "Analysis of axially magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 44, 327-343, 2012.
doi:10.2528/PIERB12080910

8. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, 2009.
doi:10.1109/TMAG.2009.2016088

9. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, 2009.
doi:10.1109/TMAG.2009.2025315

10. Bekinal, S. I., A. T. Ramakrishna, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics," Progress In Electromagnetics Research B, Vol. 47, 87-105, 2013.
doi:10.2528/PIERB12102005

11. Bekinal, S. I., A. T. Ramakrishna, and S. Jana, "Analysis of radial magnetized permanent magnet bearing characteristics for five degrees of freedom," Progress In Electromagnetics Research B, Vol. 52, 307-326, 2013.
doi:10.2528/PIERB13032102

12. Samanta, P. and H. Hirani, "Magnetic bearing configurations: Theoretical and experimental studies," IEEE Trans. Magn., Vol. 44, No. 2, 292-300, 2008.
doi:10.1109/TMAG.2007.912854

13. Tian, L. L., X. P. Ai, and Y. Q. Tian, "Analytical model of magnetic force for axial stack permanent-magnet bearings," IEEE Trans. Magn., Vol. 48, No. 10, 2592-2599, 2012.
doi:10.1109/TMAG.2012.2197635

14. Marth, E., G. Jungmayr, and W. Amrhein, "A 2-D-based analytical method for calculating permanent magnetic ring bearings with arbitrary magnetisation and its application to optimal bearing design," IEEE Trans. Magn., Vol. 50, No. 5, 1-8, 2014.
doi:10.1109/TMAG.2013.2295550

15. Bekinal, S. I., M. Doddamani, and N. D. Dravid, "Utilization of low computational cost two dimensional analytical equations in optimization of multi rings permanent magnet thrust bearings," Progress In Electromagnetics Research M, Vol. 62, 51-63, 2017.
doi:10.2528/PIERM17072007

16. Bekinal, S. I. and S. Jana, "Generalized three-dimensional mathematical models for force and stiffness in axially, radially, and perpendicularly magnetized passive magnetic bearings with `n' number of ring pairs," ASME Journal of Tribology, Vol. 138, No. 3, 031105(1-9), 2016.
doi:10.1115/1.4032668

17. Bekinal, S. I., M. R. Doddamani, and S. Jana, "Optimization of axially magnetized stack structured permanent magnet thrust bearing using three dimensional mathematical model," ASME Journal of Tribology, Vol. 139, No. 3, 031101(1-9), 2017.
doi:10.1115/1.4034533

18. Bekinal, S. I., M. R. Doddamani, B. V. Mohan, and S. Jana, "Generalized optimization procedure for rotational magnetized direction permanent magnet thrust bearing configuration," Proc. IMechE, Part C: J. Mechanical Engineering Science, Vol. 233, 2563-2573, 2019.
doi:10.1177/0954406218786976

19. Lijesh, K. P., M. R. Doddamani, and S. I. Bekinal, "A pragmatic optimization of axial stack-radial passive magnetic bearings," ASME Journal of Tribology, Vol. 140, 021901(1-9), 2018.

20. Lijesh, K. P., M. R. Doddamani, S. I. Bekinal, and S. M. Muzakkir, "Multi-objective optimization of stacked radial passive magnetic bearing," Proc. IMechE, Part J: J. Engineering Tribology, Vol. 232, 1140-1159, 2018.
doi:10.1177/1350650117733374

21. Sodano, H. A. and D. J. Inman, "Modeling of a new active eddy current vibration control system," ASME Journal of Dynamic Systems, Measurement and Control, Vol. 130, 021009-1-11, 2008.

22. Passenbrunner, J., G. Jungmayr, and W. Amrhein, "Design and analysis of a 1D actively stabilized system with viscoelastic damping support," Actuators, Vol. 8, No. 33, 2-18, 2019.

23. Cheah, S. K. and H. A. Sodano, "Novel eddy current damping mechanism for passive magnetic bearings," Journal of Vibration and Control, Vol. 14, No. 11, 1749-1766, 2008.
doi:10.1177/1077546308091219

24. Fang, J., Y. Le, J. Sun, and K. Wang, "Analysis and design of passive magnetic bearing and damping system for high-speed compressor," IEEE Trans. Magn., Vol. 48, No. 9, 2528-2537, 2012.
doi:10.1109/TMAG.2012.2196443

25. Detoni, J. G., Q. Cui, N. Amati, and A. Tonoli, "Modelling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications," Journal of Sound and Vibration, Vol. 373, 52-65, 2016.
doi:10.1016/j.jsv.2016.03.013

26. Safaeian, R. and H. Heydari, "Optimal design of a compact passive magnetic bearing based on dynamic modelling," IET Electric Power Applications, Vol. 13, No. 6, 720-729, 2019.
doi:10.1049/iet-epa.2018.5674

27. Safaeian, R. and H. Heydari, "Comprehensive comparison of different structures of passive permanent magnet bearings," IET Electric Power Applications, Vol. 12, No. 2, 179-187, 2017.
doi:10.1049/iet-epa.2017.0308

28. Bekinal, S. I. and M. Doddamani, "Improvement in the design calculations of multi ring permanent magnet thrust bearing," Progress In Electromagnetics Research M, Vol. 94, 83-93, 2020.
doi:10.2528/PIERM20052403

29. Bekinal, S. I. and M. Doddamani, "Optimum design methodology for axially polarized multi-ring radial and thrust permanent magnet bearings," Progress In Electromagnetics Research B, Vol. 88, 197-215, 2020.
doi:10.2528/PIERB20090502