Vol. 104
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-08-10
Characterization of Dielectric Properties of Non-Magnetic Materials Using Superstrate-Loaded Antennas
By
Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021
Abstract
A free-space and non-invasive measurement technique to characterize the dielectric properties of a non-magnetic NASA-developed composite material is presented. To estimate the dielectric properties of the composite material, the material under test is placed as a superstrate over a pre-characterized benchmark antenna. The reflection coefficients and gain of the superstrate-loaded antenna are then utilized to estimate the relative permittivity and loss tangent of the composite under test, respectively. Using numerical analyses and measurements of the benchmark antenna loaded with the superstrate, the aforementioned properties are estimated to be 6 and ~0.12, respectively. To validate the accuracy of the method, a square microstrip patch antenna is also designed on a grounded NASA-developed composite material at the ISM band.
Citation
Saininad Naik, Maria Pour, and Curtis Hill, "Characterization of Dielectric Properties of Non-Magnetic Materials Using Superstrate-Loaded Antennas," Progress In Electromagnetics Research M, Vol. 104, 39-47, 2021.
doi:10.2528/PIERM21071210
References

1. Nelson, S. O., "Agricultural applications of dielectric measurements," IEEE Trans. Dielectr. Electr. Insulat., Vol. 13, 688-702, Aug. 2006.
doi:10.1109/TDEI.2006.1667726

2. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials - A comparison of techniques," IEEE Trans. Dielectr. Electr. Insulat., Vol. 5, 571-577, Aug. 1998.
doi:10.1109/94.708274

3. Von Hippel, A. R., Dielectric Materials and Applications, Wiley, New York, 1961.

4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932

5. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382

6. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, Jun. 1989.
doi:10.1109/19.32194

7. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability at magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, Apr. 1990.
doi:10.1109/19.52520

8. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
doi:10.1109/TIM.2012.2203450

9. Lee, C. and C. Yang, "Single-compound complementary split-ring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 2010-2023, Apr. 2015.
doi:10.1109/TMTT.2015.2418768

10. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
doi:10.1109/LMWC.2014.2318900

11. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000.
doi:10.1109/19.872944

12. High Frequency Structure Simulator (HFSS 18.0), Canonsburg, PA, Boston, MA: ANSYS. [Online]. Available: http://www.ansoft.com/products/hf/hfss.
doi:10.1109/19.872944

13. Rogers Corporation "RT/duroid 5870/5880 high frequency laminates,", 5870/5880 datasheet, [Revised Jun. 2017].

14. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons Inc., Hoboken, NJ, USA, 2016.

15. Oberhart, M. L., Y. T. Lo, and R. Q. H. Lee, "New simple feed network for an array module of four microstrip elements," Electron. Lett., Vol. 23, No. 9, 436-437, Apr. 1987.
doi:10.1049/el:19870314

16. Huynh, T. and K. F. Lee, "Cross polarization characteristics of rectangular patch antennas," 1988 IEEE AP-S. Int. Symp. Antennas Propag., Syracuse, NY, Jun. 6-10, 1988.

17. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Boston, MA, USA, 2001.

18. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, Feb. 2010.
doi:10.1109/LAWP.2010.2042565

19. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, Jan. 2016.
doi:10.1109/TAP.2015.2496628

20. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231

21. Yang, H. Y. and H. G. Alexopoulau, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, Jul. 1987.
doi:10.1109/TAP.1987.1144186

22. Kramer, B. A., M. Lee, C.-C. Chen, and J. L. Volakis, "Design and performance of an ultrawide-band ceramic-loaded slot spiral," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2193-2199, Jul. 2005.
doi:10.1109/TAP.2005.850715

23. Al-Tarifi, M., D. Anagnostou, A. Amert, and K. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1898-1908, Feb. 2013.
doi:10.1109/TAP.2012.2231931

24. Asaadi, M. and A. Sebak, "Gain and bandwidth enhancement of 2×2 square dense dielectric patch antenna array using a holey superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1808-1811, Mar. 2017.

25. Ta, S. X. and T. K. Nguyen, "AR bandwidth and gain enhancement of patch antenna using single dielectric superstrate," Electron. Lett., Vol. 53, No. 15, 1015-1017, Jul. 2017.
doi:10.1049/el.2017.1676