1. Nelson, S. O., "Agricultural applications of dielectric measurements," IEEE Trans. Dielectr. Electr. Insulat., Vol. 13, 688-702, Aug. 2006.
doi:10.1109/TDEI.2006.1667726 Google Scholar
2. Baker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, M. D. Janezic, C. A. Jones, B. Riddle, and C. M. Weil, "Dielectric characterization of low-loss materials - A comparison of techniques," IEEE Trans. Dielectr. Electr. Insulat., Vol. 5, 571-577, Aug. 1998.
doi:10.1109/94.708274 Google Scholar
3. Von Hippel, A. R., Dielectric Materials and Applications, Wiley, 1961.
4. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, Nov. 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
5. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, Jan. 1974.
doi:10.1109/PROC.1974.9382 Google Scholar
6. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A free-space method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 38, 789-793, Jun. 1989.
doi:10.1109/19.32194 Google Scholar
7. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability at magnetic materials at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 39, 387-394, Apr. 1990.
doi:10.1109/19.52520 Google Scholar
8. Boybay, M. S. and O. M. Ramahi, "Material characterization using complementary split-ring resonators," IEEE Trans. Instrum. Meas., Vol. 61, No. 11, 3039-3046, Nov. 2012.
doi:10.1109/TIM.2012.2203450 Google Scholar
9. Lee, C. and C. Yang, "Single-compound complementary split-ring resonator for simultaneously measuring the permittivity and thickness of dual-layer dielectric materials," IEEE Trans. Microw. Theory Tech., Vol. 63, No. 6, 2010-2023, Apr. 2015.
doi:10.1109/TMTT.2015.2418768 Google Scholar
10. Lee, C.-S. and C.-L. Yang, "Complementary split-ring resonators for measuring dielectric constants and loss tangents," IEEE Microw. Wireless Comp. Lett., Vol. 24, No. 8, 563-565, Aug. 2014.
doi:10.1109/LMWC.2014.2318900 Google Scholar
11. Bogosanovich, M., "Microstrip patch sensor for measurement of the permittivity of homogeneous dielectric materials," IEEE Trans. Instrum. Meas., Vol. 49, No. 5, 1144-1148, Oct. 2000.
doi:10.1109/19.872944 Google Scholar
12. High Frequency Structure Simulator (HFSS 18.0), Canonsburg, PA, Boston, MA: ANSYS. [Online]. Available: http://www.ansoft.com/products/hf/hfss.
doi:10.1109/19.872944 Google Scholar
13. Rogers Corporation "RT/duroid 5870/5880 high frequency laminates,", 5870/5880 datasheet, [Revised Jun. 2017]. Google Scholar
14. Balanis, C. A., Antenna Theory: Analysis and Design, 4th Ed., John Wiley & Sons Inc., 2016.
15. Oberhart, M. L., Y. T. Lo, and R. Q. H. Lee, "New simple feed network for an array module of four microstrip elements," Electron. Lett., Vol. 23, No. 9, 436-437, Apr. 1987.
doi:10.1049/el:19870314 Google Scholar
16. Huynh, T. and K. F. Lee, "Cross polarization characteristics of rectangular patch antennas," 1988 IEEE AP-S. Int. Symp. Antennas Propag., Syracuse, NY, Jun. 6-10, 1988. Google Scholar
17. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
18. Farahani, H. S., M. Veysi, M. Kamyab, and A. Tadjalli, "Mutual coupling reduction in patch antenna arrays using a UC-EBG superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 9, 57-59, Feb. 2010.
doi:10.1109/LAWP.2010.2042565 Google Scholar
19. Mitra, D., B. Ghosh, A. Sarkhel, and S. R. B. Chaudhuri, "A miniaturized ring slot antenna design with enhanced radiation characteristics," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 300-305, Jan. 2016.
doi:10.1109/TAP.2015.2496628 Google Scholar
20. Li, D., Z. Szabo, X. Qing, E.-P. Li, and Z. N. Chen, "A high gain antenna with an optimized metamaterial inspired superstrate," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 6018-6023, Aug. 2012.
doi:10.1109/TAP.2012.2213231 Google Scholar
21. Yang, H. Y. and H. G. Alexopoulau, "Gain enhancement methods for printed circuit antennas through multiple superstrates," IEEE Trans. Antennas Propag., Vol. 35, No. 7, 860-863, Jul. 1987.
doi:10.1109/TAP.1987.1144186 Google Scholar
22. Kramer, B. A., M. Lee, C.-C. Chen, and J. L. Volakis, "Design and performance of an ultrawide-band ceramic-loaded slot spiral," IEEE Trans. Antennas Propag., Vol. 53, No. 7, 2193-2199, Jul. 2005.
doi:10.1109/TAP.2005.850715 Google Scholar
23. Al-Tarifi, M., D. Anagnostou, A. Amert, and K. Whites, "Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1898-1908, Feb. 2013.
doi:10.1109/TAP.2012.2231931 Google Scholar
24. Asaadi, M. and A. Sebak, "Gain and bandwidth enhancement of 2×2 square dense dielectric patch antenna array using a holey superstrate," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1808-1811, Mar. 2017. Google Scholar
25. Ta, S. X. and T. K. Nguyen, "AR bandwidth and gain enhancement of patch antenna using single dielectric superstrate," Electron. Lett., Vol. 53, No. 15, 1015-1017, Jul. 2017.
doi:10.1049/el.2017.1676 Google Scholar