1. Scapaticci, R., J. Tobon, G. Bellizzi, F. Vipiana, and L. Crocco, "Design and numerical characterization of a low-complexity microwave device for brain stroke monitoring," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 7328-7338, Dec. 2018.
doi:10.1109/TAP.2018.2871266 Google Scholar
2. Sohani, B., G. Tiberi, N. Ghavami, M. Ghavami, S. Dudley, and A. Rahimi, "Microwave imaging for stroke detection: Validation on head-mimicking phantom," 2019 PhotonIcs & Electromagnetics Research Symposium --- Spring (PIERS --- SPRING), 940-948, Rome, Italy, Jun. 17-20, 2019. Google Scholar
3. Wang, J., X. Jiang, L. Peng, X. Li, H. An, and B. Wen, "Detection of neural activity of brain functional site based on microwave scattering principle," IEEE Access, Vol. 7, 13468-13475, 2019.
doi:10.1109/ACCESS.2019.2894128 Google Scholar
4. Ilja, M., A. Massa, D. Vrba, O. Fiser, M. Salucci, and J. Vrba, "Microwave tomography system for methodical testing of human brain stroke detection approaches," International Journal of Antennas and Propagation, 2019. Google Scholar
5. Santorelli, A., E. Porter, E. Kirshin, Y. J. Liu, and M. Popovic, "Investigation of classifiers for tumor detection with an experimental time domain breast screening system," Progress In Electromagnetics Research, Vol. 144, 45-57, 2014.
doi:10.2528/PIER13110709 Google Scholar
6. Pokorny, T. and J. Tesarik, "Microwave stroke detection and classification using different methods from MATLAB's classification learner toolbox," 2019 European Microwave Conference in Central Europe (EuMCE), 500-503, IEEE, 2019. Google Scholar
7. Conceicao, R. C., M. O'Halloran, M. Glavin, and E. Jones, "Support vector machines for the classification of early-stage breast cancer based on radar target signatures," Progress In Electromagnetics Research B, Vol. 23, 311-327, 2010.
doi:10.2528/PIERB10062407 Google Scholar
8. Rahama, Y. A., O. A. Aryani, U. A. Din, M. A. Awar, A. Zakaria, and N. Qaddoumi, "Novel microwave tomography system using a phased-array antenna," IEEE Trans. Microw. Theory Tech., Vol. 66, 5119-5128, 2018. Google Scholar
9. Franceschini, S., M. Ambrosanio, F. Baselice, and V. Pascazio, "Neural networks for inverse problems: The microwave imaging case," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Mar. 2021. Google Scholar
10. Bevacqua, M. T., S. Di Meo, L. Crocco, T. Isernia, G. Matrone, and M. Pasian, "A quantitative approach for millimeter-wave breast cancer imaging," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-3, IEEE, Mar. 2021. Google Scholar
11. Chaplot, S., L. M. Patnaik, and N. R. Jagannathan, "Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network," Biomedical Signal Processing and Control, Vol. 1, No. 1, 86-92, 2006.
doi:10.1016/j.bspc.2006.05.002 Google Scholar
12. Rana, S. P., M. Dey, G. Tiberi, L. Sani, A. Vispa, G. Raspa, M. Duranti, M. Ghavami, and S. Dudley, "Machine learning approaches for automated lesion detection in microwave breast imaging clinical data," Sci. Rep., Vol. 9, 1-12, 2019.
doi:10.1038/s41598-019-46974-3 Google Scholar
13. Dachena, C., A. Fedeli, A. Fanti, M. B. Lodi, M. Pastorino, and A. Randazzo, "A microwave imaging technique for neck diseases monitoring," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, IEEE, Mar. 2021. Google Scholar
14. Ojaroudi, M., S. Bila, and M. Salimitorkamani, "A novel machine learning approach of hemorrhage stroke detection in differential microwave head imaging system," 2020 European Conference on Antennas and Propagation, 2020. Google Scholar
15. Nanni, L., S. Ghidoni, and S. Brahnam, "Handcrafted vs. non-handcrafted features for computer vision classification," Pattern Recognition, Vol. 71, 158-172, 2017, ISSN 0031-3203.
doi:10.1016/j.patcog.2017.05.025 Google Scholar
16. CST Microwave Studio. ver. 2016, CST, , Framingham, MA, USA, 2016. Google Scholar
17. Li, X., M. Jalilvand, Y. L. Sit, and T. Zwick, "A compact double-layer on-body matched bowtie antenna for medical diagnosis," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 4, 1808-1816, 2014.
doi:10.1109/TAP.2013.2297158 Google Scholar
18. Jalilvand, M., X. Li, J. Kowalewski, and T. Zwick, "Broadband miniaturised bow-tie antenna for 3D microwave tomography," Electronics Letters, Vol. 50, No. 4, 244-246, 2014.
doi:10.1049/el.2013.3974 Google Scholar
19. Jamlos, M. A., W. A. Mustafa, N. Husna, S. Z. Syed Idrus, W. Khairunizam, I. Zunaidi, Z. M. Razlan, and A. B. Shahriman, "Ultra-wideband confocal microwave imaging for brain tumor detection," IOP Conference Series: Materials Science and Engineering, Vol. 557, No. 1, 012002, IOP Publishing, 2019.
doi:10.1088/1757-899X/557/1/012002 Google Scholar
20. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
doi:10.1109/TBME.2015.2432137 Google Scholar
21. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402 Google Scholar
22. Ahsan, S., M. Koutsoupidou, E. Razzicchia, I. Sotiriou, and P. Kosmas, "Advances towards the development of a brain microwave imaging scanner," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, IEEE, Mar. 2019. Google Scholar
23. Fhager, A., S. Candefjord, M. Elam, and M. Persson, "3D simulations of intracerebral hemorrhage detection using broadband microwave technology," Sensors, Vol. 19, No. 16, 3482, 2019.
doi:10.3390/s19163482 Google Scholar
24. Wu, Y., B. Liu, and M. Zhu, "A single-pair antenna microwave medical detection system based on unsupervised feature learning," International Conference on Computational Social Networks, 404-414, Springer, Dec. 2018. Google Scholar
25. Zhang, Y.-D. and L. Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.
doi:10.2528/PIER12061410 Google Scholar
26. Parvati, K., P. Rao, and M. Mariya Das, "Image segmentation using gray-scale morphology and marker-controlled watershed transformation," Discrete Dynamics in Nature and Society, Vol. 2008, 2008. Google Scholar
27. Otsu, N., "A threshold selection method from gray-level histograms," IEEE Trans. Sys. Man. Cyber., Vol. 9, No. 1, 62-66, 1979, doi: 10.1109/TSMC.1979.4310076.
doi:10.1109/TSMC.1979.4310076 Google Scholar
28. Liu, D., "Otsu method and K-means," Ninth International Conference on Hybrid Intelligent Systems, Vol. 1, 344-349, IEEE, 2009. Google Scholar
29. Vijayabhanu, R. and V. Radha, "Recognition and elimination of missing values and outliers from an anaerobic wastewater treatment system using K-Means cluster," 2010 3rd International Conference on Advanced Computer Theory and Engineering (ICACTE), Vol. 4, V4-186, 2010. Google Scholar
30. Tripathi, S., R. S. Anand, and E. Fernandez, "A review of brain MR image segmentation techniques," Proceedings of International Conference on Recent Innovations in Applied Science, Engineering & Technology, 16-17, 2018. Google Scholar
31. Guo, L. and A. Abbosh, "Stroke localization and classification using microwave tomography with k-means clustering and support vector machine," Bioelectromagnetics, Vol. 39, No. 4, 312-324, May 2018, doi: 10.1002/bem.22118.Epub2018Mar25. PMID: 29575011.
doi:10.1002/bem.22118 Google Scholar