1. Song, X., "The importance of including sea surface current when estimating air-sea turbulent heat fluxes and wind stress in the gulf stream region," Journal of Atmospheric and Oceanic Technology, Vol. 38, No. 1, 119-138, 2021.
doi:10.1175/JTECH-D-20-0094.1 Google Scholar
2. Shi, Q. and M. A. Bourassa, "Coupling ocean currents and waves with wind stress over the gulf stream," Remote Sensing, Vol. 11, No. 12, 1476, 2019. [Online]. Available: https://www.mdpi.com/2072-4292/11/12/1476.
doi:10.3390/rs11121476 Google Scholar
3. Bao, Q., X. Dong, D. Zhu, S. Lang, and X. Xu, "The feasibility of ocean surface current measurement using pencil-beam rotating scatterometer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, No. 7, 3441-3451, 2015, doi: 10.1109/JSTARS.2015.2414451.
doi:10.1109/JSTARS.2015.2414451 Google Scholar
4. Rodriguez, E., et al. "Estimating ocean vector winds and currents using a Ka-band pencil-beam doppler scatterometer," Remote Sensing, Vol. 10, 576, 2018, doi: 10.3390/rs10040576.
doi:10.3390/rs10040576 Google Scholar
5. Miao, Y., X. Dong, Q. Bao, and D. Zhu, "Perspective of a Ku-Ka dual-frequency scatterometer for simultaneous wide-swath ocean surface wind and current measurement," Remote Sensing, Vol. 10, 1042, 2018, doi: 10.3390/rs10071042.
doi:10.3390/rs10071042 Google Scholar
6. Ardhuin, F., et al. "Measuring currents, ice drift, and waves from space: The Sea surface KInematics Multiscale monitoring (SKIM) concept," Ocean Sci., Vol. 14, No. 3, 337-354, 2018, doi: 10.5194/os-14-337-2018.
doi:10.5194/os-14-337-2018 Google Scholar
7. Rodríguez, E., M. Bourassa, D. Chelton, J. T. Farrar, D. Long, D. Perkovic-Martin, and R. Samelson, "The winds and currents mission concept," Frontiers in Marine Science, Vol. 6, 438, 2019.
doi:10.3389/fmars.2019.00438 Google Scholar
8. Du, Y., X. Dong, X. Jiang, Y. Zhang, and S. Peng, "Ocean Surface Current Multiscale Observation Mission (OSCOM): Simultaneous measurement of ocean surface current, vector wind, and temperature," Progress In Oceanography, Vol. 193, No. 3, 102531, 2021.
doi:10.1016/j.pocean.2021.102531 Google Scholar
9. Chapron, B., F. Collard, and F. Ardhuin, "Direct measurements of ocean surface velocity from space: Interpretation and validation," Journal of Geophysical Research: Oceans, Vol. 110, C7, 2005, doi: 10.1029/2004JC002809. Google Scholar
10. Mouche, A. A., F. Collard, B. Chapron, K. Dagestad, G. Guitton, J. A. Johannessen, V. Kerbaol, and M. W. Hansen, "On the use of doppler shift for sea surface wind retrieval from SAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 7, 2901-2909, 2012, doi: 10.1109/TGRS.2011.2174998.
doi:10.1109/TGRS.2011.2174998 Google Scholar
11. Yurovsky, Y., V. Kudryavtsev, S. A. Grodsky, and B. Chapron, "Sea surface Ka-band doppler measurements: Analysis and model development," Remote. Sens., Vol. 11, 839, 2019.
doi:10.3390/rs11070839 Google Scholar
12. Miao, Y., X. Dong, M. A. Bourassa, and D. Zhu, "Effects of different wave spectra on wind-wave induced doppler shift estimates," IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, 5705-5708, IEEE, 2020.
doi:10.1109/IGARSS39084.2020.9323413 Google Scholar
13. Miao, Y., X. Dong, M. A. Bourassa, and D. Zhu, "Effects of ocean wave directional spectra on doppler retrievals of ocean surface current," IEEE Transactions on Geoscience and Remote Sensing, 2021. Google Scholar
14. Elyouncha, A., L. E. B. Eriksson, R. Romeiser, and L. M. H. Ulander, "Measurements of sea surface currents in the baltic sea region using spaceborne along-track InSAR," IEEE Transactions on Geoscience and Remote Sensing, Vol. 57, No. 11, 8584-8599, 2019, doi: 10.1109/TGRS.2019.2921705.
doi:10.1109/TGRS.2019.2921705 Google Scholar
15. Hansen, M. W., F. Collard, K.-F. Dagestad, J. A. Johannessen, P. Fabry, and B. Chapron, "Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements," IEEE Transactions on Geoscience and Remote Sensing, Vol. 49, No. 10, 3582-3592, 2011.
doi:10.1109/TGRS.2011.2153864 Google Scholar
16. Bolandi, H., M. Haghparast, F. Saberi, B. Vaghei, and S. Smailzadeh, "Satellite attitude determination and contol," Measurement and Control, Vol. 45, No. 5, 151-157, 2012.
doi:10.1177/002029401204500505 Google Scholar
17. Bao, Q., M. Lin, Y. Zhang, X. Dong, S. Lang, and P. Gong, "Ocean surface current inversion method for a doppler scatterometer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 55, No. 11, 6505-6516, 2017.
doi:10.1109/TGRS.2017.2728824 Google Scholar
18. Bamler, R. and P. Hartl, "Synthetic aperture radar interferometry," Inverse Problems, Vol. 14, No. 4, R1, 1998.
doi:10.1088/0266-5611/14/4/001 Google Scholar
19. Grewal, M. S., A. P. Andrews, and C. G. Bartone, Global Navigation Satellite Systems, Inertial Navigation, and Integration, John Wiley & Sons, 2020.
doi:10.1002/9781119547860
20. Noureldin, A., T. B. Karamat, and J. Georgy, Fundamentals of Inertial Navigation, Satellite-based Positioning and Their Integration, 2013.
doi:10.1007/978-3-642-30466-8
21. Howley, B., "AA236: Overview of spacecraft attitude determination and control,", Lockheed Martin Space Systems Company, 2005. Google Scholar