Vol. 117
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2021-11-16
Numerical Analysis of a ITO Based Circularly Polarized Optically Transparent THz Antenna Employing Characteristic Mode Analysis
By
Progress In Electromagnetics Research C, Vol. 117, 1-16, 2021
Abstract
An optically transparent circularly polarized indium tin oxide based antenna having operability in THz region is proposed in this paper. An E-shaped slot and an I-shaped slot are embedded into an E-shaped radiating E-shaped radiating patch modeled by ITO and conductive carbon nanotube (CNT) on a polyimide substrate to obtain circular polarization. The unequal parallel slits of the E-shaped patch with an E-shaped slot lead to introduce two orthogonal modes, and hence circular polarization is achieved. Besides, integration of a I-shaped slot also helps to create the difference in magnitude of current distribution between the two working modes to get better axial ratio. Due to the high resistivity of indium tin oxide thin film, the patch of the antenna is covered with highly CNT film which improves the overall performance of the antenna. To overcome the limitations of the traditional design process, characteristic mode analysis is carried out which helps to realize and analyze circular polarization generation mechanism effectively. The proposed antenna shows a wide 3-dB axial ratio bandwidth of 9.66%. A reasonable gain of 2.61 dBic is obtained at 1.11 THz with excellent radiation performance. Wide 3-dB axial ratio bandwidth with reasonable gain makes this light weight transparent small-antenna competent for wireless and satellites applications.
Citation
Muhammad Asad Rahman, Md. Sarwar Uddin Chowdhury, Md. Azad Hossain, and Ahmed Toaha Mobashsher, "Numerical Analysis of a ITO Based Circularly Polarized Optically Transparent THz Antenna Employing Characteristic Mode Analysis," Progress In Electromagnetics Research C, Vol. 117, 1-16, 2021.
doi:10.2528/PIERC21081301
References

1. He, Y., Y. Chen, L. Zhang, S.-W. Wong, and Z. N. Chen, "An overview of terahertz antennas," China Communications, No. 17, 124-165, Jul. 2020.        Google Scholar

2. Jamshed, M. A., A. Nauman, M. A. B. Abbasi, and S. W. Kim, "Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey," IEEE Acc., Vol. 8, 113246-113261, Jun. 2020.        Google Scholar

3. Lee, S., M. Choo, S. Jung, and W. Hong, "Optically transparent nano-patterned antennas: A review and future directions," Appl. Sci., Vol. 8, No. 6, May 2018.        Google Scholar

4. Zhou, Y. and R. Azumi, "Carbon nanotube based transparent conductive films: Progress, challenges, and perspectives," Science and Technology of Advanced Materials, Vol. 17, No. 1, 493-516, Sep. 2016.        Google Scholar

5. Anand, S., M. S. Darak, and D. S. Kumar, "Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications," Proc. AIP Conf., 430-436, Feb. 2014.        Google Scholar

6. Simons, R. N. and R. Q. Lee, "Feasibility study of optically transparent microstrip patch antenna," IEEE Antennas Propag. Soc. Int. Symp. 1997, Dig., 2100-2103, Jul. 1997.        Google Scholar

7. Mias, C., C. Tsakonas, N. Prountzos, et al. "Optically transparent microstrip antennas," IEE Colloq. Antennas Automotives, 8, IEE, Feb. 2000.        Google Scholar

8. Guan, N., H. Furuya, K. Himeno, K. Goto, and K. Ito, "Basic study on an antenna made of a transparent conductive film," IEICE Trans. Commun., Art no. E90-B(9), Sep. 2007.        Google Scholar

9. Yasin, T., R. Baktur, and C. Furse, "A comparative study on two types of transparent patch antennas," 2011 XXXth URSI Gen. Assem. Sci. Symp., 1-4, IEEE, Aug. 2011.        Google Scholar

10. Song, H. J., T. Y. Hsu, D. F. Sievenpiper, H. P. Hsu, J. Schaffner, and E. Yasan, "A method for improving the efficiency of transparent film antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 753-756, Oct. 2008.        Google Scholar

11. Saberin, J. R. and C. Furse, "Challenges with optically transparent patch antennas," IEEE Antennas Propag. Mag., Vol. 54, 10-16, Jul. 2012.        Google Scholar

12. Thampy, A. S. and S. K. Dhamodharan, "Performance analysis and comparison of ITO-and FTO- based optically transparent terahertz U-shaped patch antennas," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 52-58, Feb. 2015.        Google Scholar

13. Anand, S., M. S. Darak, and D. Sriram Kumar, "Investigations on indium tin oxide based optically transparent terahertz E-shaped patch antenna," Adv. Intell. Syst. Comput., Vol. 264, 195-202, 2014.        Google Scholar

14. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 67-73, Feb. 2015.        Google Scholar

15. Desai, A., T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 62, No. 5, 2090-2103, Feb. 2020.        Google Scholar

16. Desai, A., T. Upadhyaya, M. Palandoken, J. Patel, and R. Patel, "Transparent conductive oxide-based multiband CPW fed antenna," Wireless Personal Communications, Vol. 113, 961-975, Apr. 2020.        Google Scholar

17. Desai, A., T. Upadhyaya, and R. Patel, "Compact wideband transparent antenna for 5G communication systems," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 781-786, Mar. 2019.        Google Scholar

18. Dao, Q. H., T. J. Cherogony, and B. Geck, "Optically transparent and circularly polarized patch antenna for K-band applications," 2016 IEEE Ger. Microw. Conf., 247-250, Mar. 2016.        Google Scholar

19. Wahid, W. I., M. R. Kamarudin, M. Khalily, and T. Peter, "Circular polarized transparent antenna for 5.8 GHz WLAN applicatons," Progress In Electromagnetics Research Letters, Vol. 57, 39-45, 2015.        Google Scholar

20. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A wideband dual-circularly polarized 2 × 1 array antenna using multi-layer substrate for compact structure," Microw. Opt. Technol. Lett., Vol. 62, No. 1, 474-483, Sep. 2019.        Google Scholar

21. Khidre, A., K. F. Lee, F. Yang, and A. Elsherbeni, "Wideband circularly polarized E-shaped patch antenna for wireless applications," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 219-229, Oct. 2010.        Google Scholar

22. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A polarization reconfigurable microstrip antenna employing dual-perturbation technique," Progress In Electromagnetics Research M, Vol. 69, 197-206, 2018.        Google Scholar

23. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Trans. Antennas Propag., Vol. 19, No. 3, 348-358, May 1971.        Google Scholar

24. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, Sep. 1971.        Google Scholar

25. Harrington, R., J. Mautz, and Y. Chang, "Characteristic modes for dielectric and magnetic bodies," IEEE Trans. Antennas Propag., Vol. 20, No. 2, 194-198, Mar. 1972.        Google Scholar

26. Tran, H. H., N. Nguyen-Trong, and A. M. Abbosh, "Simple design procedure of a broadband circularly polarized slot monopole antenna assisted by characteristic mode analysis," IEEE Acc., Vol. 6, 78386-78393, Dec. 2018.        Google Scholar

27. Zhang, Q., R. Ma, W. Su, and Y. Gao, "Design of a multimode UWB antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3712-3717, Jul. 2018.        Google Scholar

28. Luo, Y., Z. N. Chen, and K. Ma, "Enhanced bandwidth and directivity of a dual-mode compressed high-order mode stub-loaded dipole using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1922-1925, Mar. 2019.        Google Scholar

29. Yan, Y., J. Ouyang, X. Ma, R. Wang, and A. Sharif, "Circularly polarized rfid tag antenna design for metallic poles using characteristic mode analysis," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 7, 1327-1331, Jul. 2019.        Google Scholar

30. Han, M., W. Dou, and , "Compact clock-shaped broadband circularly polarized antenna based on characteristic mode analysis," IEEE Acc., Vol. 7, 159952-159959, Nov. 2019.        Google Scholar

31. Chowdhury, M. S. U., M. A. Rahman, M. A. Hossain, and A. T. Mobashsher, "A transparent conductive material based circularly polarized nano-antenna for THz applications," Proc. 2020 IEEE Region 10 Symposium (TENSYMP), 754-757, Dhaka, Bangladesh, Jun. 2020 .        Google Scholar

32. Chen, Z., W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, "Fabrication of highly transparent and conductive indium-tin oxidethin films with a high figure of merit via solution processing," Langmuir, Vol. 29, No. 45, 13836-13842, Oct. 2013.        Google Scholar

33. Chisca, S., I. Sava, V. Musteata, and M. Bruma, "Dielectric and conduction properties of polyimide films," CAS 2011 Proceedings (2011 International Semiconductor Conference), 253-256, Oct. 2011.        Google Scholar

34. Wu, X., C. Shu, X. He, S. Wang, X. Fan, Z. Yu, D. Yan, and W. Huan, "Optically transparent and thermal-stable polyimide filmsderived from a semi-aliphatic diamine: Synthesis andproperties," Macromol. Chem. Phys., Vol. 221, No. 5, 1-7, Mar. 2020.        Google Scholar

35. Zhang, W., H. Xiong, S. Wang, M. Li, and Y. Gu, "Electromagnetic characteristics of carbon nanotube film materials," Chinese Journal of Aeronautics, Vol. 28, No. 4, 1245-1254, May 2015.        Google Scholar

36. Kaskekla, A., et al. "Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique," Nano Lett., Vol. 10, No. 11, 4349-4355, Sep. 2010.        Google Scholar

37. Dash, S. and A. Patnaik, "Material selection for THz antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1183-1187, May 2018.        Google Scholar

38. Mansour, A. M., N. Shehata, B. M. Hamza, and M. R. M. Rizak, "Efficient design of flexible and low cost paper-basedinkjet-printed antenna," Int. J. Antennas Propag., Vol. 2015, 1-6, 2015.        Google Scholar

39. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, S. U. Rehman, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer forconformal applications," Int. J. Antennas Propag., Vol. 2018, 1-7, 2018.        Google Scholar

40. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 71-74, Jan. 2014.        Google Scholar

41. Labiano, I. I., A. Alomainy, and , "Flexible inkjet-printed graphene antenna on Kapton," Flex Print Electron., Vol. 6, 1-8, Jun. 2021.        Google Scholar

42. Kanso, A., et al. "Design and fabrication of EBG and CWP antennas using inkjet printing technology," Microw. Opt. Technol. Lett., Vol. 55, No. 7, 1520-1526, Jul. 2013.        Google Scholar

43. Kirsch, N. J., N. A. Vacirca, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Performance of transparent conductive polymer antennas in a MIMO ad-hoc network," 2010 IEEE 6th Int. Conf. Wireless and Mobile Computing, Networking and Commun., 9-14, Oct. 2014.        Google Scholar

44. ITO ink for transparent conductive films, https://product.statnano.com/product/9087/ito-ink-for-transparent-conductive-films, accessd on 30 Oct. 2021.        Google Scholar

45. Gilshtein, E., et al. "Inkjet-printed conductive ITO patterns for transparent security systems," Adv. Mater. Technol., Vol. 5, No. 9, 1-6, Sep. 2020.        Google Scholar

46. CNT conductive ink, https://www.nanoshel.com/product/cnt-conductive-ink, accessd on 30 Oct. 2021.        Google Scholar

47. Elwi, T. A., H. M. Al-Rizzo, D. G. Rucker, E. Dervishi, Z. Li, and A. S. Biris, "Multi-walled carbon nanotube-based RF antennas," Nanotechnology, Vol. 21, No. 4, 1-10, Jan. 2010.        Google Scholar

48. Wakatsuki, A., Y. Muramoto, and T. Ishibashi, "Development of terahertz-wavephotomixer module using a uni-traveling-carrier photodiode," NTT Technical Review, Vol. 10, No. 2, 1-7, Feb. 2017.        Google Scholar

49. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas Propag. Mag., Vol. 49, 52-68, Oct. 2007.        Google Scholar

50. Chen, Y. and C. F. Wang, Characteristic Modes, John Wiley & Sons, Inc., Hoboken, NJ, 2015.

51. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," 2011 IEEE Int. Symp. Antennas Propag., 3085-3087, Jul. 2011.        Google Scholar