1. He, Y., Y. Chen, L. Zhang, S.-W. Wong, and Z. N. Chen, "An overview of terahertz antennas," China Communications, No. 17, 124-165, Jul. 2020. Google Scholar
2. Jamshed, M. A., A. Nauman, M. A. B. Abbasi, and S. W. Kim, "Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey," IEEE Acc., Vol. 8, 113246-113261, Jun. 2020. Google Scholar
3. Lee, S., M. Choo, S. Jung, and W. Hong, "Optically transparent nano-patterned antennas: A review and future directions," Appl. Sci., Vol. 8, No. 6, May 2018. Google Scholar
4. Zhou, Y. and R. Azumi, "Carbon nanotube based transparent conductive films: Progress, challenges, and perspectives," Science and Technology of Advanced Materials, Vol. 17, No. 1, 493-516, Sep. 2016. Google Scholar
5. Anand, S., M. S. Darak, and D. S. Kumar, "Investigation of fluorine-doped tin oxide based optically transparent E-shaped patch antenna for terahertz communications," Proc. AIP Conf., 430-436, Feb. 2014. Google Scholar
6. Simons, R. N. and R. Q. Lee, "Feasibility study of optically transparent microstrip patch antenna," IEEE Antennas Propag. Soc. Int. Symp. 1997, Dig., 2100-2103, Jul. 1997. Google Scholar
7. Mias, C., C. Tsakonas, N. Prountzos, et al. "Optically transparent microstrip antennas," IEE Colloq. Antennas Automotives, 8, IEE, Feb. 2000. Google Scholar
8. Guan, N., H. Furuya, K. Himeno, K. Goto, and K. Ito, "Basic study on an antenna made of a transparent conductive film," IEICE Trans. Commun., Art no. E90-B(9), Sep. 2007. Google Scholar
9. Yasin, T., R. Baktur, and C. Furse, "A comparative study on two types of transparent patch antennas," 2011 XXXth URSI Gen. Assem. Sci. Symp., 1-4, IEEE, Aug. 2011. Google Scholar
10. Song, H. J., T. Y. Hsu, D. F. Sievenpiper, H. P. Hsu, J. Schaffner, and E. Yasan, "A method for improving the efficiency of transparent film antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 753-756, Oct. 2008. Google Scholar
11. Saberin, J. R. and C. Furse, "Challenges with optically transparent patch antennas," IEEE Antennas Propag. Mag., Vol. 54, 10-16, Jul. 2012. Google Scholar
12. Thampy, A. S. and S. K. Dhamodharan, "Performance analysis and comparison of ITO-and FTO- based optically transparent terahertz U-shaped patch antennas," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 52-58, Feb. 2015. Google Scholar
13. Anand, S., M. S. Darak, and D. Sriram Kumar, "Investigations on indium tin oxide based optically transparent terahertz E-shaped patch antenna," Adv. Intell. Syst. Comput., Vol. 264, 195-202, 2014. Google Scholar
14. Thampy, A. S., M. S. Darak, and S. K. Dhamodharan, "Analysis of graphene based optically transparent patch antenna for terahertz communications," Phys. E Low-Dimensional Syst. Nanostructures, Vol. 66, 67-73, Feb. 2015. Google Scholar
15. Desai, A., T. Upadhyaya, J. Patel, R. Patel, and M. Palandoken, "Flexible CPW fed transparent antenna for WLAN and sub-6 GHz 5G applications," Microw. Opt. Technol. Lett., Vol. 62, No. 5, 2090-2103, Feb. 2020. Google Scholar
16. Desai, A., T. Upadhyaya, M. Palandoken, J. Patel, and R. Patel, "Transparent conductive oxide-based multiband CPW fed antenna," Wireless Personal Communications, Vol. 113, 961-975, Apr. 2020. Google Scholar
17. Desai, A., T. Upadhyaya, and R. Patel, "Compact wideband transparent antenna for 5G communication systems," Microw. Opt. Technol. Lett., Vol. 61, No. 3, 781-786, Mar. 2019. Google Scholar
18. Dao, Q. H., T. J. Cherogony, and B. Geck, "Optically transparent and circularly polarized patch antenna for K-band applications," 2016 IEEE Ger. Microw. Conf., 247-250, Mar. 2016. Google Scholar
19. Wahid, W. I., M. R. Kamarudin, M. Khalily, and T. Peter, "Circular polarized transparent antenna for 5.8 GHz WLAN applicatons," Progress In Electromagnetics Research Letters, Vol. 57, 39-45, 2015. Google Scholar
20. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A wideband dual-circularly polarized 2 × 1 array antenna using multi-layer substrate for compact structure," Microw. Opt. Technol. Lett., Vol. 62, No. 1, 474-483, Sep. 2019. Google Scholar
21. Khidre, A., K. F. Lee, F. Yang, and A. Elsherbeni, "Wideband circularly polarized E-shaped patch antenna for wireless applications," IEEE Antennas Propag. Mag., Vol. 52, No. 5, 219-229, Oct. 2010. Google Scholar
22. Rahman, M. A., E. Nishiyama, and I. Toyoda, "A polarization reconfigurable microstrip antenna employing dual-perturbation technique," Progress In Electromagnetics Research M, Vol. 69, 197-206, 2018. Google Scholar
23. Garbacz, R. and R. Turpin, "A generalized expansion for radiated and scattered fields," IEEE Trans. Antennas Propag., Vol. 19, No. 3, 348-358, May 1971. Google Scholar
24. Harrington, R. F. and J. R. Mautz, "Theory of characteristic modes for conducting bodies," IEEE Trans. Antennas Propag., Vol. 19, No. 5, 622-628, Sep. 1971. Google Scholar
25. Harrington, R., J. Mautz, and Y. Chang, "Characteristic modes for dielectric and magnetic bodies," IEEE Trans. Antennas Propag., Vol. 20, No. 2, 194-198, Mar. 1972. Google Scholar
26. Tran, H. H., N. Nguyen-Trong, and A. M. Abbosh, "Simple design procedure of a broadband circularly polarized slot monopole antenna assisted by characteristic mode analysis," IEEE Acc., Vol. 6, 78386-78393, Dec. 2018. Google Scholar
27. Zhang, Q., R. Ma, W. Su, and Y. Gao, "Design of a multimode UWB antenna using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 66, No. 7, 3712-3717, Jul. 2018. Google Scholar
28. Luo, Y., Z. N. Chen, and K. Ma, "Enhanced bandwidth and directivity of a dual-mode compressed high-order mode stub-loaded dipole using characteristic mode analysis," IEEE Trans. Antennas Propag., Vol. 67, No. 3, 1922-1925, Mar. 2019. Google Scholar
29. Yan, Y., J. Ouyang, X. Ma, R. Wang, and A. Sharif, "Circularly polarized rfid tag antenna design for metallic poles using characteristic mode analysis," IEEE Antennas Wireless Propag. Lett., Vol. 18, No. 7, 1327-1331, Jul. 2019. Google Scholar
30. Han, M., W. Dou, and , "Compact clock-shaped broadband circularly polarized antenna based on characteristic mode analysis," IEEE Acc., Vol. 7, 159952-159959, Nov. 2019. Google Scholar
31. Chowdhury, M. S. U., M. A. Rahman, M. A. Hossain, and A. T. Mobashsher, "A transparent conductive material based circularly polarized nano-antenna for THz applications," Proc. 2020 IEEE Region 10 Symposium (TENSYMP), 754-757, Dhaka, Bangladesh, Jun. 2020 . Google Scholar
32. Chen, Z., W. Li, R. Li, Y. Zhang, G. Xu, and H. Cheng, "Fabrication of highly transparent and conductive indium-tin oxidethin films with a high figure of merit via solution processing," Langmuir, Vol. 29, No. 45, 13836-13842, Oct. 2013. Google Scholar
33. Chisca, S., I. Sava, V. Musteata, and M. Bruma, "Dielectric and conduction properties of polyimide films," CAS 2011 Proceedings (2011 International Semiconductor Conference), 253-256, Oct. 2011. Google Scholar
34. Wu, X., C. Shu, X. He, S. Wang, X. Fan, Z. Yu, D. Yan, and W. Huan, "Optically transparent and thermal-stable polyimide filmsderived from a semi-aliphatic diamine: Synthesis andproperties," Macromol. Chem. Phys., Vol. 221, No. 5, 1-7, Mar. 2020. Google Scholar
35. Zhang, W., H. Xiong, S. Wang, M. Li, and Y. Gu, "Electromagnetic characteristics of carbon nanotube film materials," Chinese Journal of Aeronautics, Vol. 28, No. 4, 1245-1254, May 2015. Google Scholar
36. Kaskekla, A., et al. "Aerosol-synthesized SWCNT networks with tunable conductivity and transparency by a dry transfer technique," Nano Lett., Vol. 10, No. 11, 4349-4355, Sep. 2010. Google Scholar
37. Dash, S. and A. Patnaik, "Material selection for THz antennas," Microw. Opt. Technol. Lett., Vol. 60, No. 5, 1183-1187, May 2018. Google Scholar
38. Mansour, A. M., N. Shehata, B. M. Hamza, and M. R. M. Rizak, "Efficient design of flexible and low cost paper-basedinkjet-printed antenna," Int. J. Antennas Propag., Vol. 2015, 1-6, 2015. Google Scholar
39. Paracha, K. N., S. K. A. Rahim, H. T. Chattha, S. S. Aljaafreh, S. U. Rehman, and Y. C. Lo, "Low-cost printed flexible antenna by using an office printer forconformal applications," Int. J. Antennas Propag., Vol. 2018, 1-7, 2018. Google Scholar
40. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 71-74, Jan. 2014. Google Scholar
41. Labiano, I. I., A. Alomainy, and , "Flexible inkjet-printed graphene antenna on Kapton," Flex Print Electron., Vol. 6, 1-8, Jun. 2021. Google Scholar
42. Kanso, A., et al. "Design and fabrication of EBG and CWP antennas using inkjet printing technology," Microw. Opt. Technol. Lett., Vol. 55, No. 7, 1520-1526, Jul. 2013. Google Scholar
43. Kirsch, N. J., N. A. Vacirca, T. P. Kurzweg, A. K. Fontecchio, and K. R. Dandekar, "Performance of transparent conductive polymer antennas in a MIMO ad-hoc network," 2010 IEEE 6th Int. Conf. Wireless and Mobile Computing, Networking and Commun., 9-14, Oct. 2014. Google Scholar
44. ITO ink for transparent conductive films, https://product.statnano.com/product/9087/ito-ink-for-transparent-conductive-films, accessd on 30 Oct. 2021. Google Scholar
45. Gilshtein, E., et al. "Inkjet-printed conductive ITO patterns for transparent security systems," Adv. Mater. Technol., Vol. 5, No. 9, 1-6, Sep. 2020. Google Scholar
46. CNT conductive ink, https://www.nanoshel.com/product/cnt-conductive-ink, accessd on 30 Oct. 2021. Google Scholar
47. Elwi, T. A., H. M. Al-Rizzo, D. G. Rucker, E. Dervishi, Z. Li, and A. S. Biris, "Multi-walled carbon nanotube-based RF antennas," Nanotechnology, Vol. 21, No. 4, 1-10, Jan. 2010. Google Scholar
48. Wakatsuki, A., Y. Muramoto, and T. Ishibashi, "Development of terahertz-wavephotomixer module using a uni-traveling-carrier photodiode," NTT Technical Review, Vol. 10, No. 2, 1-7, Feb. 2017. Google Scholar
49. Cabedo-Fabres, M., E. Antonino-Daviu, A. Valero-Nogueira, and M. F. Bataller, "The theory of characteristic modes revisited: A contribution to the design of antennas for modern applications," IEEE Antennas Propag. Mag., Vol. 49, 52-68, Oct. 2007. Google Scholar
50. Chen, Y. and C. F. Wang, Characteristic Modes, John Wiley & Sons, Inc., Hoboken, NJ, 2015.
51. Yasin, T., R. Baktur, and C. Furse, "A study on the efficiency of transparent patch antennas designed from conductive oxide films," 2011 IEEE Int. Symp. Antennas Propag., 3085-3087, Jul. 2011. Google Scholar