Vol. 106
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-19
An Integro-Differential Approach for Eddy Currents Computation in Structures Having Heterogeneous Dimensions
By
Progress In Electromagnetics Research M, Vol. 106, 127-137, 2021
Abstract
The aim of this paper is to develop a hybrid modeling approach based on direct coupling between the finite element method (FEM) and the partial element equivalent circuits method (PEEC). Through this FEM-PEEC approach, we can efficiently compute the three-dimensional eddy current distribution created by a rectangular coil (exciting coil) in conductive and magnetic structures having heterogeneous dimensions. Magnetic field created by the rectangular coil is given by calculating quasi-static Green's function integrals. In goal to construct rectangular coil, the calculation is made for elementary parallelepipedic conductors oriented respectively in x and y directions. By this manner, three possible configurations are proposed and compared to show errors, especially in corners. By only meshing the active parts of the domain (without air region), we confirm through the issued results that the proposed methodology contributes to accelerate the execution time while maintaining the precision. The obtained results are validated with the numerical ones by 3D FEM (Flux 3D Software).
Citation
Lyes Aomar, and Hicham Allag, "An Integro-Differential Approach for Eddy Currents Computation in Structures Having Heterogeneous Dimensions," Progress In Electromagnetics Research M, Vol. 106, 127-137, 2021.
doi:10.2528/PIERM21082609
References

1. She, S., Y. Chen, Y. He, Z. Zhou, and X. Zou, "Optimal design of remote field eddy current testing probe for ferromagnetic pipeline inspection," J. Measurement, Vol. 168, No. 2, 108306, 2020.

2. Menana, H. and M. Feliachi, "Electromagnetic characterization of the CFRPs anisotropic conductivity: Modeling and measurements," EPJAP, Vol. 53, No. 2, 21101-21106, 2011.

3. Mohdeb, N., "Comparative study of circular flat spiral coils structure effect on magnetic resonance wireless power transfer performance," Progress In Electromagnetics Research M, Vol. 94, 119-129, 2020.
doi:10.2528/PIERM20051705

4. Wu, F., S. K. Moon, and H. Son, "Orientation measurement based on magnetic inductance by the extended distributed multi-pole model," Sensors, Vol. 14, 11504-11521, 2014.
doi:10.3390/s140711504

5. Gendron, M., B. Hazel, E. Boudreault, H. Champliaud, and X. Pham, "Coupled thermo-electromagnetic model of a new robotic high-frequency local induction heat treatment system for large steel components," Applied Thermal Engineering, Vol. 150, 372-385, 2019.
doi:10.1016/j.applthermaleng.2018.12.156

6. Boudreault, E., B. Hazel, J. Côté, and S. Godin, "A new robotic process for in situ heat treatment on large steel components," Proceedings of ASME Power Conference, V002T06A001, Boston, Massachusetts, USA, 2013.

7. Fu, X., B. Wang, X. Zhu, X. Tang, and H. Ji, "Numerical and experimental investigations on large-diameter gear rolling with local induction heating process," IJAMT, Vol. 91, No. 1-4, 1-11, 2017.

8. Kruzík, M. and A. Prohl, "Recent developments in the modeling, analysis, and numerics of ferromagnetism," SIAM Review, Vol. 48, No. 3, 439-483, 2006.
doi:10.1137/S0036144504446187

9. Albertz, D., S. Dappen, and G. Henneberger, "Calculation of the 3D nonlinear eddy current field in moving conductors and its application to braking systems," IEEE Trans. on Magnetics, Vol. 32, No. 3, 768-771, 1996.
doi:10.1109/20.497353

10. Aimé, J., B. Cogitore, G. Meunier, E. Clavel, and Y. Maréchal, "Numerical methods for eddy currents modeling of planar transformers," IEEE Trans. on Magnetics, Vol. 47, No. 5, 1014-1017, 2011.
doi:10.1109/TMAG.2010.2091398

11. Versaci, M., G. Angiulli, P. di Barba, and F. C. Morabito, "Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates," Open Physics, Vol. 18, No. 1, 230-240, 2020.
doi:10.1515/phys-2020-0159

12. Djemoui, S., H. Allag, M. Chebout, and H. Bouchekara, "Partial electrical equivalent circuits and finite difference methods coupling; application to eddy currents calculation for conductive and magnetic thin plates," Progress In Electromagnetics Research C, Vol. 114, 83-96, 2021.
doi:10.2528/PIERC21051602

13. Allag, H., J.-P. Yonnet, M. Fassenet, and M. E. H. Latreche, "3D analytical calculation of interactions between perpendicularly magnetized magnets - Application to any magnetization direction," Sensor Letters, Vol. 7, No. 3, 486-491, 2009.
doi:10.1166/sl.2009.1094

14. Albanese, R., G. Rubinacci, A. Tamburrino, S. Ventre, and F. Villone, "A fast 3D eddy current integral formulation," COMPEL, Vol. 20, No. 2, 317-331, 2001.
doi:10.1108/03321640110383221

15. Chebout, M., H. Azizi, and M. R. Mekideche, "A model assisted probability of detection approach for ecndt of hidden defect in aircraft structures," Progress In Electromagnetics Research Letters, Vol. 95, 1-8, 2021.
doi:10.2528/PIERL20092701

16. Simkin, J. and C. W. Trowbridge, "On the use of the total scalar potential in the numerical solution of field problem in electromagnetics," International Journal in the Numerical Methods in Engineering, Vol. 14, 423-440, 1979.

17. Le-Duc, T., G. Meunier, O. Chadebec, and J.-M. Guichon, "A new integral formulation for eddy current computation in thin conductive shells," IEEE Trans. on Magnetics, Vol. 48, No. 2, 427-430, 2012.
doi:10.1109/TMAG.2011.2173920

18. Chadebec, O., J. L. Coulomb, and F. Janet, "A review of magnetostatic moment method," IEEE Tran. on Magnetics, Vol. 42, No. 4, 515-520, 2006.
doi:10.1109/TMAG.2006.870929

19. Kruzík, M. and A. Prohl, "Recent developments in the modeling, analysis, and numerics of ferromagnetism," SIAM Review, Vol. 48, No. 3, 439-483, 2006.
doi:10.1137/S0036144504446187

20. Albertz, D., S. Dappen, and G. Henneberger, "Calculation of the 3D nonlinear eddy current field in moving conductors and its application to braking systems," IEEE Trans. on Magnetics, Vol. 32, No. 3, 768-771, 1996.
doi:10.1109/20.497353

21. Zarko, D., S. Stipetic, M. Martinovic, M. Kovacic, T. Jercic, and Z. Hanic, "Reduction of computational efforts in finite element based permanent magnet traction motor optimization," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1799-1807, 2018.
doi:10.1109/TIE.2017.2736485

22. Aomar, L., H. Allag, M. Feliachi, and J. P. Yonnet, "3-D integral approach for calculating mutual interactions between polygon-shaped massive coils," IEEE Trans. on Magnetics, Vol. 53, No. 11, 1-5, 2017.
doi:10.1109/TMAG.2017.2706022

23. Allag, H. and J.-P. Yonnet, "3-D analytical calculation of the torque and force exerted between two cuboidal magnets," IEEE Trans. on Magnetics, Vol. 45, No. 10, 3969-3972, 2009.
doi:10.1109/TMAG.2009.2025047

24. Allag, H., J.-P. Yonnet, and M. E. H. Latreche, "Analytical calculation of the torque exerted between two perpendicularly magnetized magnets," Journal of Applied Physics, Vol. 109, No. 7, 07E701, 2011.
doi:10.1063/1.3535148

25. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (Pancake)," IEEE Trans. on Magnetics, Vol. 49, No. 2, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909

26. Ekman, J., G. Antonini, A. Orlandi, and A. E. Ruehli, "Stability of PEEC models with respect to partial element accuracy," Symposium on EMC, Vol. 1, 271-276, Santa Clara, California, USA, 2004.

27. Ruehli, A. E., "Inductance calculations in a complex integrated circuit environment," IBM Journal of Research and Development, Vol. 16, No. 5, 470-481, 1972.
doi:10.1147/rd.165.0470

28. Antonini, G., D. Deschrijver, and T. Dhaene, "Broadband macromodels for retarded partial element equivalent circuit (rPEEC) method," IEEE Trans. EMC, Vol. 49, 35-48, 2007.

29. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (Pancake)," IEEE Trans. on Magnetics, Vol. 49, No. 2, 860-868, 2013.
doi:10.1109/TMAG.2012.2212909

30. Ekman, J., G. Antonini, A. Orlandi, and A. E. Ruehli, "Stability of PEEC models with respect to partial element accuracy," Symposium on EMC, Vol. 1, 271-276, Santa Clara, California, USA, 2004.

31. Ruehli, A. E., G. Antonini, and L. Jiang, Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques, Wiley & Sons, Inc., Hoboken, New Jersey, USA, 2017.
doi:10.1002/9781119078388

32. Kwon, O. M., M. V. K. Chari, S. J. Salon, and K. Sivasubramaniam, "Development of integral equation solution for 3-D eddy current distribution in a conducting body," IEEE Tran. on Magnetics, Vol. 39, No. 5, 2612-2614, 2003.
doi:10.1109/TMAG.2003.816497

33. Kriezis, E. E., T. D. Tsiboukis, S. M. Panas, and J. A. Tegopoulos, "Eddy currents: Theory and applications," Proceeding of the IEEE, Vol. 80, No. 10, 1559-1589, 1992.
doi:10.1109/5.168666