1. Mizutani, N. and T. Kobayashi, "Magnetic field vector detection in frequency domain with an optically pumped atomic magnetometer," IEEE Transactions on Magnetics, Vol. 48, No. 11, 4096-4099, Nov. 2012.
doi:10.1109/TMAG.2012.2200657 Google Scholar
2. Han, F., S. Harada, and I. Sasada, "Fluxgate and search coil hybrid: A low-noise wide-band magnetometer," IEEE Transactions on Magnetics, Vol. 48, No. 11, 3700-3703, Nov. 2012.
doi:10.1109/TMAG.2012.2196762 Google Scholar
3. Wang, Z., M. Deng, K. Chen, M. Wang, Q. Zhang, and D. Zeng, "Development and evaluation of an ultralow-noise sensor system for marine electric field measurements," Sensors and Actuators A: Physical, Vol. 213, 70-78, 2014, ISSN0924-4247, https://doi.org/10.1016/j.sna.2014.03.026.
doi:10.1016/j.sna.2014.03.026 Google Scholar
4. Han, F., S. Harada, and I. Sasada, "Fluxgate and search coil hybrid: A low-noise wide-band magnetometer," IEEE Transactions on Magnetics, Vol. 48, 3700-3703, 2012.
doi:10.1109/TMAG.2012.2196762 Google Scholar
5. Kawai, J., G. Uehara, T. Kohrin, H. Ogata, and H. Kado, "Three axis SQUID magnetometer for low-frequency geophysical applications," IEEE Transactions on Magnetics, Vol. 35, 3974-3976, 1999.
doi:10.1109/20.800726 Google Scholar
6. Chen, Y. F., P. Wu, W. Zhu, and G. Fang, "An innovative magnetic anomaly detection algorithm based on signal modulation," IEEE Transactions on Magnetics, Vol. 56, No. 9, 1-9, Sept. 2020, Art no. 6200609, doi: 10.1109/TMAG.2020.3005896. Google Scholar
7. Zhou, J., J. Chen, and Z. Shan, "Spatial signature analysis of submarine magnetic anomaly at low altitude," IEEE Transactions on Magnetics, Vol. 53, No. 12, 1-7, Dec. 2017, Art no. 6001107, doi: 10.1109/TMAG.2017.2735940.
doi:10.1109/TMAG.2017.2735940 Google Scholar
8. Newman, J. N., Marine Hydrodynamics, MIT Press, 1977.
doi:10.7551/mitpress/4443.001.0001
9. Gu, D. F. and O. M. Phillips, "On narrow V-like ship wakes," J. Fluid Mech., Vol. 275, 301-321, 1988. Google Scholar
10. Kostyukov, A. A., Theory of Ship Waves and Waves Resistance, 241-243, Effective Communications Inc., 1968.
11. Gilman, M., A. Soloviev, and H. Graber, "Study of the far wake of a large ship," J. Atmos. Oceanic Technol., Vol. 28, 720-733, 2011.
doi:10.1175/2010JTECHO791.1 Google Scholar
12. Weaver, J. T., "Magnetic variations associated with ocean waves and swell," Journal of Geophysical Research, Vol. 70, 1921-1929, 1965.
doi:10.1029/JZ070i008p01921 Google Scholar
13. Sanford, T. B., "Motionally induced electric and magnetic fields in the sea," Journal of Geophysical Research, Vol. 76, 3476-3492, 1971.
doi:10.1029/JC076i015p03476 Google Scholar
14. Madurasinghe, D., "Induced electromagnetic fields associated with large ship wakes," Wave Motion, Vol. 20, 283-292, 1994.
doi:10.1016/0165-2125(94)90053-1 Google Scholar
15. Madurasinghe, D. and E. O. Tuck, "The induced electromagnetic field associated with submerged moving bodies in an unstratified conducting fluid," IEEE Journal of Ocean Engineering, Vol. 19, 193-199, 1994.
doi:10.1109/48.286641 Google Scholar
16. Madurasinghe, D. and G. R. Haack, "The induced electromagnetic field associated with wakes-signal processing aspects," Proceedings of IGRASS, Vol. 94, 2335-2357, Pasadena, CA, 1994. Google Scholar
17. Zou, N. and A. Nehorai, "Detection of ship wakes using an airborne magnetic transducer," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 1, 532-539, Jan. 2000, doi: 10.1109/36.823948.
doi:10.1109/36.823948 Google Scholar
18. Fallah, M. A. and H. Abiri, "Electromagnetic fields induced by the motion of Di-Hull bodies in a conducting fluid," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5257-5263, Oct. 2013, doi: 10.1109/TMAG.2013.2260345.
doi:10.1109/TMAG.2013.2260345 Google Scholar
19. Guo, X., D. Zhao, and Z. Cao, "Detection of the magnetic field induced by the wake of a moving submerged body using simple models," American Journal of Electromagnetics and Applications, Vol. 4, No. 2, 20-25, 2016, doi: 10.11648/j.ajea.20160402.12. Google Scholar
20. Chaillout, J. J., J. Berthier, and R. Blanpain, "Modelling of electromagnetic wakes of moving submerged bodies in stratified sea water," IEEE Transactions on Magnetics, Vol. 32, No. 3, 998-1001, May 1996, doi: 10.1109/20.497408.
doi:10.1109/20.497408 Google Scholar
21. Yaakobi, O., G. Zilman, and T. Miloh, "Detection of the electromagnetic field induced by the wake of a ship moving in a moderate sea state of finite depth," J. Engrg. Math., Vol. 70, 17-27, 2011.
doi:10.1007/s10665-010-9410-z Google Scholar
22. Amir Fallah, M. and H. Abiri, "Multi-sensor approach in vessel magnetic wake imaging," Wave Motion, Vol. 51, 60-76, 2014.
doi:10.1016/j.wavemoti.2013.06.004 Google Scholar
23. Xu, Z., C. Du, and M. Xia, "Evaluation of electromagnetic fields induced by wake of an undersea-moving slender body," IEEE Access, Vol. 6, 2943-2951, 2018, doi: 10.1109/ACCESS.2017.2786246.
doi:10.1109/ACCESS.2017.2786246 Google Scholar
24. Xu, Z. H., C. P. Du, and M. Y. Xia, "Electromagnetic fields due to the wake of a moving slender body in a finite-depth ocean with density stratification," Sci. Rep., Vol. 8, 14647, 2018, https://doi.org/10.1038/s41598-018-32789-1.
doi:10.1038/s41598-018-32789-1 Google Scholar
25. Robert, P., Electrical and Magnetic Properties of Materials, Artech House, 1988.
26. Schon, J. H., "Physical properties of rocks: Fundamentals and principles of petrophysics Calculated from field data at Otis MMR," Cape Cod, Massachusetts, 1996. Google Scholar
27. Mavko, G., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge University Press, 1998.
28. Carmichael, R. S., Practical Handbook of Physical Properties of Rocks and Minerals, CRC Press, 1989.