1. Pandey, R., A. K. Shankhwar, and A. Singh, "An improved conversion efficiency of 1.975 to 4.744 GHz rectenna for wireless sensor applications," Progress In Electromagnetics Research C, Vol. 109, 217-225, 2021.
doi:10.2528/PIERC20121102 Google Scholar
2. Lin, W. and R. W. Ziolkowski, "Wirelessly powered internet-of-things sensors facilitated by an electrically small Egyptian axe dipole rectenna," Asia-Pacific Microwave Conference Proceedings, APMC, 891-892, Dec. 2019, doi: 10.1109/APMC46564.2019.9038497. Google Scholar
3. Okba, A., A. Takacs, and H. Aubert, "Compact flat dipole rectenna for IoT applications," Progress In Electromagnetics Research C, Vol. 87, 39-49, 2018.
doi:10.2528/PIERC18071604 Google Scholar
4. Carvalho, A., N. Carvalho, P. Pinho, and R. Gonçalves, "Wireless power transmission and its applications for powering Drones," 8th Congress of the Portuguese Committee of URSI, 2014. Google Scholar
5. Takhedmit, H., L. Cirio, F. Costa, and O. Picon, "Transparent rectenna and rectenna array for RF energy harvesting at 2.45 GHz," 8th European Conference on Antennas and Propagation, EuCAP 2014, 2970-2972, 2014, doi: 10.1109/EuCAP.2014.6902451.
doi:10.1109/EuCAP.2014.6902451 Google Scholar
6. Takhedmit, H., Z. Saddi, and L. Cirio, "A high-performance circularly-polarized rectenna for wireless energy harvesting at 1.85 and 2.45 GHz frequency bands," Progress In Electromagnetics Research C, Vol. 79, 89-100, 2017.
doi:10.2528/PIERC17070706 Google Scholar
7. Lu, P., X. S. Yang, J. L. Li, and B. Z. Wang, "A compact frequency reconfigurable rectenna for 5.2- and 5.8-GHz wireless power transmission," IEEE Trans. Power Electron., Vol. 30, No. 11, 6006-6010, Nov. 2015, doi: 10.1109/TPEL.2014.2379588.
doi:10.1109/TPEL.2014.2379588 Google Scholar
8. Li, X., L. Yang, and L. Huang, "Novel design of 2.45-GHz rectenna element and array for wireless power transmission," IEEE Access, Vol. 7, 28356-28362, 2019, doi: 10.1109/ACCESS.2019.2900329.
doi:10.1109/ACCESS.2019.2900329 Google Scholar
9. Palazzi, V., et al. "Design of a ultra-compact low-power rectenna in paper substrate for energy harvesting in the Wi-Fi band," 2016 IEEE Wireless Power Transfer Conference (WPTC), Aveiro, Portugal, Jun. 2016, doi: 10.1109/WPT.2016.7498823. Google Scholar
10. Sun, H., Y. X. Guo, M. He, and Z. Zhong, "Design of a high-efficiency 2.45-GHz rectenna for low-input-power energy harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 929-932, 2012, doi: 10.1109/LAWP.2012.2212232. Google Scholar
11. Olgun, U., C. Chen, and J. L. Volakis, "Investigation of rectenna array configurations for enhanced rf power harvesting," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 262-265, 2011, doi: 10.1109/LAWP.2011.2136371.
doi:10.1109/LAWP.2011.2136371 Google Scholar
12. Niotaki, K., S. Kim, S. Jeong, A. Collado, A. Georgiadis, and M. M. Tentzeris, "A compact dual-band rectenna using slot-loaded dual band folded dipole antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1634-1637, 2013, doi: 10.1109/LAWP.2013.2294200.
doi:10.1109/LAWP.2013.2294200 Google Scholar
13. Haboubi, W., H. Takhedmit, J.-D. Lan Sun Luk, S.-E. Adami, B. Allard, F. Costa, C. Vollaire, O. Picon, and L. Cirio, "An effcient dual-circularly polarized rectenna for RF energy harvesting in the 2.45 GHz ISM band," Progress In Electromagnetics Research, Vol. 148, 31-39, 2014.
doi:10.2528/PIER14031103 Google Scholar
14. Bao, X., K. Yang, O. O'Conchubhair, and M. J. Ammann, "Differentially-fed omnidirectional circularly polarized patch antenna for RF energy harvesting," 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, May 2016, doi: 10.1109/EuCAP.2016.7481820. Google Scholar
15. Cao, Y., W. Hong, L. Deng, S. Li, and L. Yin, "A 2.4 GHz circular polarization rectenna with harmonic suppression for microwave power transmission," Proceedings - 2016 IEEE International Conference on Internet of Things; IEEE Green Computing and Communications; IEEE Cyber, Physical, and Social Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, 359-363, May 2017, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData.2016.85. Google Scholar
16. Huang, F. J., T. C. Yo, C. M. Lee, and C. H. Luo, "Design of circular polarization antenna with harmonic suppression for rectenna application," IEEE Antennas Wirel. Propag. Lett., Vol. 11, 592-595, 2012, doi: 10.1109/LAWP.2012.2201437.
doi:10.1109/LAWP.2012.2201437 Google Scholar
17. "CST Studio Suite 3D EM simulation and analysis software,", https://www.3ds.com/products-services/simulia/products/cst-studio-suite/?utm_source=cst.com&utm medium=301&utm_campaign=cst (accessed May 2021). Google Scholar
18. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design - Theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2572-2581, Oct. 2003, doi: 10.1109/TAP.2003.817562.
doi:10.1109/TAP.2003.817562 Google Scholar
19. "145-2013 - IEEE Standard for Definitions of Terms for Antennas/IEEE Standard/IEEE Xplore,", https://ieeexplore.ieee.org/document/6758443 (accessed Mar. 31, 2021).
doi:10.1109/TAP.2003.817562 Google Scholar
20. Mabrouki, A., M. Latrach, and V. Lorrain, "High efficiency low power rectifier design using zero bias schottky diodes," 2014 IEEE Faible Tension Faible Consommation, Monaco, Monaco, 2014, doi: 10.1109/FTFC.2014.6828604. Google Scholar
21. Skyworks "Surface mount mixer and detector schottky diodes data sheet, document #200041,", accessed: Mar. 31, 2021, [online], available: www.skyworksinc.com. Google Scholar