1. Phadke, A. G., M. Izumi, M. Yokoyama, K. Umemoto, T. Hlibka, and M. Ibrahim, "Fundamental basis for distance relaying with symmetrical components," IEEE Trans. Power App. Syst., Vol. 96, No. 3, 635-646, 1977.
doi:10.1109/T-PAS.1977.32375 Google Scholar
2. Kezunovic, M. and B. Perunicic, "Automated transmission line fault analysis using synchronized sampling at two end," IEEE Trans. Power Del., Vol. 11, No. 1, 121-129, 1988. Google Scholar
3. Takagi, T., Y. Yamakoshi, J. Baba, K. Uemura, and T. Sakaguchi, "A new algorithm of an accurate fault location for EHV/UHV transmission lines: PART I -- Fourier transformation method," IEEE Trans. Power App. Syst., Vol. 3, No. 3, 1316-1323, 1981.
doi:10.1109/TPAS.1981.316604 Google Scholar
4. Lopes, F., K. M. Dantas, K. M. Silva, and F. B. Costa, "Accurate two-terminal transmission line fault location using traveling waves," IEEE Trans. Power Del., Vol. 33, No. 2, 873-880, 2018.
doi:10.1109/TPWRD.2017.2711262 Google Scholar
5. Liao, Y. and S. Elangovan, "Improved symmetrical component-based fault distance estimation for digital distance protection," IEE Proc. Gener. Transm. Distrib., Vol. 145, No. 6, 739-746, 1998.
doi:10.1049/ip-gtd:19982366 Google Scholar
6. Apostolopoulos, C. A. and G. N. Korres, "A novel algorithm for locating faults on transposed/untransposed transmission lines without utilizing line parameters," IEEE Trans. Power Del., Vol. 6, No. 2, 2328-2338, 2010.
doi:10.1109/TPWRD.2010.2053223 Google Scholar
7. Kawady, T. and J. Stenzel, "A practical fault location approach for double circuit transmission lines using single end data," IEEE Trans. Power Del., Vol. 18, No. 4, 1166-1173, 2003.
doi:10.1109/TPWRD.2003.817503 Google Scholar
8. Livani, H. and C. Y. Evrenosoglu, "A machine learning and wavelet-based fault location method for hybrid transmission lines," IEEE Trans. Smart Grid, Vol. 5, No. 1, 51-58, 2014.
doi:10.1109/TSG.2013.2260421 Google Scholar
9. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
doi:10.1109/TSG.2014.2367820 Google Scholar
10. Elsadd, M. A. and A. Y. Abdelaziz, "Unsynchronized fault-location technique for two- and three-terminal transmission lines," Electric Power Systems Research, Vol. 158, 228-239, 2018.
doi:10.1016/j.epsr.2018.01.010 Google Scholar
11. Elkalashy, N., T. A. Kawady, W. M. Khater, and A. M. I. Taalab, "Unsynchronized fault-location technique for double-circuit transmission systems independent of line parameters," IEEE Trans. Power Del., Vol. 99, No. 4, 1591-1599, 2015.
doi:10.1109/TPWRD.2015.2472638 Google Scholar
12. Zhang, Y., J. Liang, Z. H. Yun, and X. M. Dong, "A new fault-location algorithm for series-compensated double-circuit transmission lines based on the distributed parameter model," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
doi:10.1109/TPWRD.2018.2838344 Google Scholar
13. Xu, Z., Z. Q. Du, L. Ran, Y. K. Wu, and Q. X. Yang, "A current differential relay for a 1000-kV UHV transmission line," IEEE Trans. Power Del., Vol. 19, No. 4, 1392-1399, 2007.
doi:10.1109/TPWRD.2007.900274 Google Scholar
14. Lin, Y., C. W. Liu, and C. S. Chen, "A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination --- Part I: Theory and algorithms," IEEE Trans. Smart Grid, Vol. 19, No. 4, 1588-1593, 2004. Google Scholar
15. Lee, Y., C. H. Chao, T. C. Lin, and C. W. Liu, "synchro phasor-based fault location method for three-terminal hybrid transmission lines with one off-service line branch," IEEE Trans. Power Del., Vol. 33, No. 6, 3249-3251, 2018.
doi:10.1109/TPWRD.2018.2840958 Google Scholar
16. Terzija, V., Z. M. Radojevic, and G. Preston, "Flexible synchronized measurement technology-based fault locator," IEEE Trans. Smart Grid, Vol. 6, No. 2, 866-873, 2015.
doi:10.1109/TSG.2014.2367820 Google Scholar
17. Zhao, L., J. W. Zhu, and B. Gu, "A new technique based on fundamental frequency positive sequence fault components for fault location," IEEJ Transactions on Electrical and Electronic Engineering, Vol. 15, 536-543, 2020.
doi:10.1002/tee.23086 Google Scholar