Vol. 107
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-30
A Triple Band Highly Sensitive Refractive Index Sensor Using Terahertz Metamaterial Perfect Absorber
By
Progress In Electromagnetics Research M, Vol. 107, 13-23, 2022
Abstract
This research introduces a novel design of a metamaterial absorber having the range in terahertz, capable of sensing changes in the refractive index of the encircling medium. The layout includes adjoining rectangular patches in the form of a plus symbol along with four circular patch resonators (CPRs) on the pinnacle of a Gallium Arsenide (GaAs) substrate. The proposed design comes up with three consecutive absorption peaks, with an absorptivity of 99.0%, 99.75%, and 98.0% at three different resonant frequencies of 2.36 THz, 2.675 THz, and 2.97 THz, respectively, and a Full Width Half Maximum (FWHM) of 0.08, 0.04 and 0.05. This structure's quality factor (Q-factor) at the three resonant frequencies is 29.5, 66.8 and 59.4 together with 6.75, 17.5 and 30 as figure of merit (FoM), respectively. The proposed design offers a sensitivity of 0.54 THz/RIU, 0.7 THz/RIU, and 1.5 THz/RIU in those three absorption bands. To support the selection of design parameters, parametric assessment was done. The designed sensor can find its applications in terahertz sensing.
Citation
Sagnik Banerjee, Purba Dutta, Amit K. Jha, Prabhat Ranjan Tripati, Avireni Srinivasulu, Bhargav Appasani, and Cristian Ravariu, "A Triple Band Highly Sensitive Refractive Index Sensor Using Terahertz Metamaterial Perfect Absorber," Progress In Electromagnetics Research M, Vol. 107, 13-23, 2022.
doi:10.2528/PIERM21100701
References

1. Shamonina, E. and L. Solymar, "Metamaterials: How the subject started," Metamaterials, Vol. 1, 12-18, 2007.

2. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Application of Negative Refractive Index Materials, CRC Press, Boca Raton, 2008.

3. Ali, H. O., A. M. Al-Hindawi, Y. I. Abdulkarim, E. Nugoolcharoenlap, T. Tippo, F. Alkurt, O. Altntas, and M. Karaaslan, "Simulated and experimental studies of multi-band symmetric metamaterial absorber with polarization independent for radar applications," Chinese Physics B, 1056-1674, 2021.

4. Abdulkarim, Y. I., S. Dalgac, F. O. Alkurt, et al. "Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," J. Mater Sci.: Mater Electron., Vol. 32, 24258-24272, 2021.

5. Dalgaç, S., F. Karadağ, M. Bakır, O. Akgöl, E. Ünal, and M. Karaaslan, "Chiral metamaterial-based sensor applications to determine quality of car lubrication oil," Transactions of the Institute of Measurement and Control, Vol. 43, No. 7, 1640-1649, 2021.

6. Pelluri, R. and B. Appasani, "Genetic algorithm optimized X-band absorber using metamaterials," Progress In Electromagnetics Research Letters, Vol. 69, 59-64, 2017.

7. Verma, V. K., et al. "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020.

8. Appasani, B., et al. "A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications," Plasmonics, Vol. 14, 737-742, 2019.

9. Ling, X. Y., Z. Y. Xiao, and X. X. Zheng, "Tunable terahertz metamaterial absorber and the sensing application," J. J. Mater. Sci. Mater. Electron., Vol. 29, No. 1, 1-7, 2017.

10. Appasani, B., "An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021.

11. Tao, H., et al. "Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications," Applied Physics Letters, Vol. 97, No. 26, 2010.

12. Appasani, B., "Temperature tunable seven band terahertz metamaterial absorber using slotted flower-shaped resonator on an InSb substrate," Plasmonics, 1-7, 2021.

13. Cong, L. and R. Singh, "Sensing with THz metamaterial absorbers,", 2014, arXiv:1408.3711.[Online]. Available: https://arxiv.org/abs/1408.3711.

14. Mirzaei, S., N. G. Green, M. Rotaru, and S. H. Pu, "Detecting and identifying DNA via the THz backbone frequency using a metamaterial based label-free biosensor," Proceedings of SPIE, Vol. 10103, 2017.

15. Saadeldin, A. S., M. F. O. Hameed, E. M. A. Elkaramany, and S. S. A. Obayya, "Highly sensitive terahertz metamaterial sensor," IEEE Sensors Journal, Vol. 19, No. 18, 7993-7999, Sept. 15, 2019.

16. Banerjee, S., U. Nath, P. Dutta, A. V. Jha, B. Appasani, and N. Bizon, "A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing," Inventions, Vol. 6, No. 4, 78, 2021.

17. Shen, F., J. Qin, and Z. Han, "Planar antenna array as a highly sensitive terahertz sensor," Applied Optics, Vol. 58, 540, 2019.

18. Li, Y., X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, "Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein," Journal of Applied Physics D, Vol. 52, 95-105, 2019.

19. Xiang, Y., J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, "Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene," IEEE Photonics Journal, Vol. 10, No. 1, 1-7, Feb. 2018, Art no. 6800507, doi: 10.1109/JPHOT.2017.2778245.

20. Banerjee, S., et al. "A terahertz metamaterial absorber based refractive index sensor with high quality factor," 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1-4, 2021, doi: 10.1109/ECAI52376.2021.9515149.

21. Nickpay, M. R., M. Danaie, and A. Shahzadi, "Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators plasmonics," Plasmonics, 2021.

22. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 118, 83-103, 2015.

23. Zhang, W., J.-Y. Li, and J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018.

24. Yan, Z., C. Tang, G. Wu, Y. Tang, P. Gu, J. Chen, Z. Liu, and Z. Huang, "Perfect absorption and refractive-index sensing by metasurfaces composed of cross-shaped hole arrays in metal substrate," Nanomaterials, Vol. 11, 63, 2021, https://doi.org/10.3390/nano11010063.

25. Xie, Q., G. X. Dong, B. X.Wang, and W. Q. Huang, "High-Q fano resonance in terahertz frequency based on an asymmetric metamaterial resonator," Nanoscale Resonance Letters, Vol. 13, 294, 2018.

26. Zhang, W., et al. "Ultrasensitive dual-band terahertz sensing with metamaterial perfect absorber," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, 2017, doi: 10.1109/IMWS-AMP.2017.8247404.

27. Zhu, L., H. Li, L. Dong, W. Zhou, M. Rong, X. Zhang, and J. Guo, "Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor," Opt. Mater. Express, Vol. 11, 2109-2121, 2021.

28. Lan, F., et al. "Dual-band refractometric terahertz biosensing with intensewave-matter-overlap microfluidic channel," Biomed. Opt. Exp., Vol. 10, No. 8, 3789-3799, 2019.

29. Wang, J., T. Lang, Z. Hong, M. Xiao, and J. Yu, "Design and fabrication of a triple-band terahertz metamaterial absorber," Nanomaterials, Vol. 11, No. 5, 1110, 2021.

30. Li, Z., Z. Yi, T. Liu, L. Liu, X. Chen, F. Zheng, J. Zhang, H. Li, P. Wu, and P. Yan, "Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal," Physical Chemistry Chemical Physics, Vol. 23, No. 32, 17374-17381, 2021.

31. Wang, B. X., G. Z. Wang, and T. Sang, "Simple design of novel triple-band terahertz metamaterial absorber for sensing application," Journal of Physics D: Applied Physics, Vol. 49, No. 16, 165307, 2016.

32. Liu, N., et al. "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Matter, Vol. 8, 758-762, 2009.