1. Shamonina, E. and L. Solymar, "Metamaterials: How the subject started," Metamaterials, Vol. 1, 12-18, 2007. Google Scholar
2. Ramakrishna, S. A. and T. M. Grzegorczyk, Physics and Application of Negative Refractive Index Materials, CRC Press, 2008.
3. Ali, H. O., A. M. Al-Hindawi, Y. I. Abdulkarim, E. Nugoolcharoenlap, T. Tippo, F. Alkurt, O. Altntas, and M. Karaaslan, "Simulated and experimental studies of multi-band symmetric metamaterial absorber with polarization independent for radar applications," Chinese Physics B, 1056-1674, 2021. Google Scholar
4. Abdulkarim, Y. I., S. Dalgac, F. O. Alkurt, et al. "Utilization of a triple hexagonal split ring resonator (SRR) based metamaterial sensor for the improved detection of fuel adulteration," J. Mater Sci.: Mater Electron., Vol. 32, 24258-24272, 2021. Google Scholar
5. Dalgaç, S., F. Karadağ, M. Bakır, O. Akgöl, E. Ünal, and M. Karaaslan, "Chiral metamaterial-based sensor applications to determine quality of car lubrication oil," Transactions of the Institute of Measurement and Control, Vol. 43, No. 7, 1640-1649, 2021. Google Scholar
6. Pelluri, R. and B. Appasani, "Genetic algorithm optimized X-band absorber using metamaterials," Progress In Electromagnetics Research Letters, Vol. 69, 59-64, 2017. Google Scholar
7. Verma, V. K., et al. "An octaband polarization insensitive terahertz metamaterial absorber using orthogonal elliptical ring resonators," Plasmonics, Vol. 15, No. 1, 75-81, 2020. Google Scholar
8. Appasani, B., et al. "A simple multi-band metamaterial absorber with combined polarization sensitive and polarization insensitive characteristics for terahertz applications," Plasmonics, Vol. 14, 737-742, 2019. Google Scholar
9. Ling, X. Y., Z. Y. Xiao, and X. X. Zheng, "Tunable terahertz metamaterial absorber and the sensing application," J. J. Mater. Sci. Mater. Electron., Vol. 29, No. 1, 1-7, 2017. Google Scholar
10. Appasani, B., "An octaband temperature tunable terahertz metamaterial absorber using tapered triangular structures," Progress In Electromagnetics Research Letters, Vol. 95, 9-16, 2021. Google Scholar
11. Tao, H., et al. "Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications," Applied Physics Letters, Vol. 97, No. 26, 2010. Google Scholar
12. Appasani, B., "Temperature tunable seven band terahertz metamaterial absorber using slotted flower-shaped resonator on an InSb substrate," Plasmonics, 1-7, 2021. Google Scholar
13. Cong, L. and R. Singh, "Sensing with THz metamaterial absorbers,", 2014, arXiv:1408.3711.[Online]. Available: https://arxiv.org/abs/1408.3711. Google Scholar
14. Mirzaei, S., N. G. Green, M. Rotaru, and S. H. Pu, "Detecting and identifying DNA via the THz backbone frequency using a metamaterial based label-free biosensor," Proceedings of SPIE, Vol. 10103, 2017. Google Scholar
15. Saadeldin, A. S., M. F. O. Hameed, E. M. A. Elkaramany, and S. S. A. Obayya, "Highly sensitive terahertz metamaterial sensor," IEEE Sensors Journal, Vol. 19, No. 18, 7993-7999, Sept. 15, 2019. Google Scholar
16. Banerjee, S., U. Nath, P. Dutta, A. V. Jha, B. Appasani, and N. Bizon, "A theoretical terahertz metamaterial absorber structure with a high quality factor using two circular ring resonators for biomedical sensing," Inventions, Vol. 6, No. 4, 78, 2021. Google Scholar
17. Shen, F., J. Qin, and Z. Han, "Planar antenna array as a highly sensitive terahertz sensor," Applied Optics, Vol. 58, 540, 2019. Google Scholar
18. Li, Y., X. Chen, F. Hu, D. Li, H. Teng, Q. Rong, W. Zhang, J. Han, and H. Liang, "Four resonators based high sensitive terahertz metamaterial biosensor used for measuring concentration of protein," Journal of Applied Physics D, Vol. 52, 95-105, 2019. Google Scholar
19. Xiang, Y., J. Zhu, L. Wu, Q. You, B. Ruan, and X. Dai, "Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene," IEEE Photonics Journal, Vol. 10, No. 1, 1-7, Feb. 2018, Art no. 6800507, doi: 10.1109/JPHOT.2017.2778245. Google Scholar
20. Banerjee, S., et al. "A terahertz metamaterial absorber based refractive index sensor with high quality factor," 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 1-4, 2021, doi: 10.1109/ECAI52376.2021.9515149. Google Scholar
21. Nickpay, M. R., M. Danaie, and A. Shahzadi, "Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators plasmonics," Plasmonics, 2021. Google Scholar
22. Yahiaoui, R., S. Tan, L. Cong, R. Singh, F. Yan, and W. Zhang, "Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber," Journal of Physics D: Applied Physics, Vol. 118, 83-103, 2015. Google Scholar
23. Zhang, W., J.-Y. Li, and J. Xie, "High sensitivity refractive index sensor based on metamaterial absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018. Google Scholar
24. Yan, Z., C. Tang, G. Wu, Y. Tang, P. Gu, J. Chen, Z. Liu, and Z. Huang, "Perfect absorption and refractive-index sensing by metasurfaces composed of cross-shaped hole arrays in metal substrate," Nanomaterials, Vol. 11, 63, 2021, https://doi.org/10.3390/nano11010063. Google Scholar
25. Xie, Q., G. X. Dong, B. X.Wang, and W. Q. Huang, "High-Q fano resonance in terahertz frequency based on an asymmetric metamaterial resonator," Nanoscale Resonance Letters, Vol. 13, 294, 2018. Google Scholar
26. Zhang, W., et al. "Ultrasensitive dual-band terahertz sensing with metamaterial perfect absorber," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), 1-3, 2017, doi: 10.1109/IMWS-AMP.2017.8247404. Google Scholar
27. Zhu, L., H. Li, L. Dong, W. Zhou, M. Rong, X. Zhang, and J. Guo, "Dual-band electromagnetically induced transparency (EIT) terahertz metamaterial sensor," Opt. Mater. Express, Vol. 11, 2109-2121, 2021. Google Scholar
28. Lan, F., et al. "Dual-band refractometric terahertz biosensing with intensewave-matter-overlap microfluidic channel," Biomed. Opt. Exp., Vol. 10, No. 8, 3789-3799, 2019. Google Scholar
29. Wang, J., T. Lang, Z. Hong, M. Xiao, and J. Yu, "Design and fabrication of a triple-band terahertz metamaterial absorber," Nanomaterials, Vol. 11, No. 5, 1110, 2021. Google Scholar
30. Li, Z., Z. Yi, T. Liu, L. Liu, X. Chen, F. Zheng, J. Zhang, H. Li, P. Wu, and P. Yan, "Three-band perfect absorber with high refractive index sensing based on an active tunable Dirac semimetal," Physical Chemistry Chemical Physics, Vol. 23, No. 32, 17374-17381, 2021. Google Scholar
31. Wang, B. X., G. Z. Wang, and T. Sang, "Simple design of novel triple-band terahertz metamaterial absorber for sensing application," Journal of Physics D: Applied Physics, Vol. 49, No. 16, 165307, 2016. Google Scholar
32. Liu, N., et al. "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Matter, Vol. 8, 758-762, 2009. Google Scholar