1. Vučković, J., "Quantum optics and cavity QED with quantum dots in photonic crystals,", Note 2013, Stanford University, 2013.
doi:10.1103/PhysRevA.75.063830 Google Scholar
2. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
doi:10.1063/5.0027465 Google Scholar
3. Yi, J., Z. Shi, D. Li, C. Liu, H. Sun, L. Zhu, X. Chen, and S. N. Burokur, "A metamaterial lens based on transformation optics for horizontal radiation of OAM vortex waves," J. Appl. Phys., Vol. 129, 2021.
doi:10.1038/nmat1994 Google Scholar
4. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
doi:10.2528/PIER00122803 Google Scholar
5. Kishk, A. A., A. W. Glisson, G. P. Junker, W. M. Ave, and E. Segundo, "Bandwidth enhancement for split cylindrical dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 33, 97-118, 2001.
doi:10.1080/09500349608232782 Google Scholar
6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., 773-793, 1996.
doi:10.1364/JOSAB.27.001603 Google Scholar
7. Teixeira, F. L., H. Odabasi, and K. F. Warnick, "Anisotropic metamaterial blueprints for cladding control of waveguide modes," J. Opt. Soc. Am. B, Vol. 27, 1603, 2010. Google Scholar
8. McCall, M., J. B. Pendry, V. Galdi, Y. Lai, S. A. R. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, "Roadmap on transformation optics," J. Opt., Vol. 20, No. 6, United Kingdom, 2018.
doi:10.1016/S0079-6638(08)00202-3 Google Scholar
9. Leonhardt, U. and T. G. Philbin, "Chapter 2 Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1017/S0305004100012664 Google Scholar
10. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Math. Proc. Cambridge Philos. Soc., Vol. 30, 421-427, 1934.
doi:10.1163/156939399X01104 Google Scholar
11. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, 665-686, 1999.
doi:10.1109/PROC.1981.12048 Google Scholar
12. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1981.
doi:10.1016/j.photonics.2007.07.013 Google Scholar
13. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostructures - Fundam. Appl., Vol. 6, 87-95, 2008.
doi:10.1126/science.1125907 Google Scholar
14. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.3390/en3071335 Google Scholar
15. Yang, J., M. Huang, C. Yang, J. Peng, and R. Zong, "Metamaterial electromagnetic superabsorber with arbitrary geometries," Energies, Vol. 3, No. 7, 1335-1343, 2010.
doi:10.1063/1.5045489 Google Scholar
16. Vasantharajan, G., N. Yogesh, and V. Subramanian, "Beam steering based on coordinate transformation of Fermat spiral configurations," AIP Adv., Vol. 9, 075217, 2019.
doi:10.1103/PhysRevLett.105.266807 Google Scholar
17. Fernandez-Domnguez, A. I., S. A. Maier, and J. B. Pendry, "Collection and concentration of light by touching spheres: A transformation optics approach," Phys. Rev. Lett., Vol. 105, 266807, 2010.
doi:10.1103/PhysRevB.77.035122 Google Scholar
18. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
doi:10.2528/PIER15112505 Google Scholar
19. Dehdashti, S., H. Wang, Y. Jiang, Z. Xu, and H. Chen, "Review of black hole realization in laboratory base on transformation optics," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.
doi:10.1103/PhysRevA.90.043812 Google Scholar
20. Kadic, M., G. Dupont, S. Enoch, and S. Guenneau, "Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes," Phys. Rev. A, Vol. 90, 043812, 2014.
doi:10.1103/PhysRevLett.100.063903 Google Scholar
21. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1016/j.ijleo.2010.10.023 Google Scholar
22. Zhou, J., M. Li, L. Xie, and D. Liu, "Design of a new kind of polarization splitter based on transformation optics," Optik, Vol. 122, 1672-1675, 2011.
doi:10.1063/1.5020204 Google Scholar
23. Haddad, H., R. Loison, R. Gillard, A. Harmouch, and A. Jrad, "A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors," AIP Adv., Vol. 8, 025114, 2018.
doi:10.1364/OE.417678 Google Scholar
24. Pakniyat, S., S. Jam, A. Yahaghi, and G. W. Hanson, "Reflectionless plasmonic right-angled waveguide bend and divider using graphene and transformation optics," Optics Express, Vol. 29, No. 6, 9589-9598, 2021. Google Scholar
25. Xu, L. and H. Chen, "Conformal transformation optics," Nat. Photonics, Vol. 9, 15-23, 2014.
doi:10.1364/OE.18.006089 Google Scholar
26. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries," Optics Express, Vol. 18, No. 6, 6089, 2010. Google Scholar
27. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, 1998, http://www.comsol.com.
doi:10.1016/j.photonics.2015.04.003
28. Yogesh, N., Q. Yu, and Z. Ouyang, "Single- and multi-beam confinement of electromagnetic waves in a photonic crystal open cavity providing rapid heating and high temperatures," Photonics Nanostructures - Fundam. Appl., Vol. 15, 89-98, 2015.
doi:10.1364/OE.22.002725 Google Scholar
29. Cao, Y., J. Xie, Y. Liu, and Z. Liu, "Modeling and optimization of photonic crystal devices based on transformation optics method," Optics Express, Vol. 22, 2725-2734, 2014.
doi:10.1063/1.4794940 Google Scholar
30. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
doi:10.2528/PIER12050206 Google Scholar
31. Yogesh, N. and V. Subramanian, "Spatial beam compression and effective beam injection using triangular gradient index profile photonic crystals," Progress In Electromagnetics Research, Vol. 129, 51-67, 2012.
doi:10.1002/adma.201605198 Google Scholar
32. Zhou, N., C. Liu, J. A. Lewis, and D. Ham, "Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications," Adv. Mater., Vol. 29, No. 15, 1605198, 2017.
doi:10.1002/adma.201800940 Google Scholar
33. Velasco-Hogan, A., J. Xu, and M. A. Meyers, "Additive manufacturing as a method to design and optimize bioinspired structures," Adv. Mater., Vol. 30, No. 52, 1800940, 2018. Google Scholar
34. Poyanco, J. M., F. Pizarro, and E. Rajo-Iglesias, "Wideband hyperbolic flat lens in the Ka-band based on 3D-printing and transformation optics," Appl. Phys. Lett., Vol. 118, 2021. Google Scholar