Vol. 106
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-12-27
Spatially Squeezed Electromagnetic Modes of a Transformational Optics Based Cavity Resonator for Targeted Material Heating
By
Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021
Abstract
Confining electromagnetic (e-m) modes in a tiny space is a desirable aspect for many applications including targeted material heating and light harvesting techniques. In this work, we report spatially squeezed e-m modes of a cavity resonator formed by the modified transformation optical (TO) medium. The proposed coordinate transformation scheme suggests curved contours of refractive index profile such that the e-m mode can be confined within the contours. The effective mode area for a TO cavity is at least 10 times smaller than the air-filled metallic cavity. The confined e-m modes of a proposed cavity are horizontally flattened but vertically squeezed of the dimension of λ/49. The material parameters of the proposed TO medium are approximated with non-magnetic and isotropic dielectric values. For an application aspect, squeezed mode of the TO cavity is used for targeted material heating, and it is demonstrated based on e-m thermal co-simulations. A tiny dielectric material placed at the squeezed part of the cavity mode is heated rapidly with the temperature rise of 2.350˚C/s (110˚C/s) for the single (dual) e-m source excitation with the peak electric field strength of 5 x 104 V/m. We further discuss how one can realize the proposed TO medium practically with a cell-grid approximation using photonic crystals and metamaterials.
Citation
ASRAFALI BARKATHULLA, Chakravarthy Venkateswaran, and Natesan Yogesh, "Spatially Squeezed Electromagnetic Modes of a Transformational Optics Based Cavity Resonator for Targeted Material Heating," Progress In Electromagnetics Research M, Vol. 106, 205-214, 2021.
doi:10.2528/PIERM21101804
References

1. Vučković, J., "Quantum optics and cavity QED with quantum dots in photonic crystals,", Note 2013, Stanford University, 2013.
doi:10.1103/PhysRevA.75.063830        Google Scholar

2. Ramakrishna, S. A., S. Guenneau, S. Enoch, G. Tayeb, and B. Gralak, "Confining light with negative refraction in checkerboard metamaterials and photonic crystals," Phys. Rev. A, Vol. 75, 063830, 2007.
doi:10.1063/5.0027465        Google Scholar

3. Yi, J., Z. Shi, D. Li, C. Liu, H. Sun, L. Zhu, X. Chen, and S. N. Burokur, "A metamaterial lens based on transformation optics for horizontal radiation of OAM vortex waves," J. Appl. Phys., Vol. 129, 2021.
doi:10.1038/nmat1994        Google Scholar

4. Tanaka, Y., J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, "Dynamic control of the Q factor in a photonic crystal nanocavity," Nature Mater., Vol. 6, 862-865, 2007.
doi:10.2528/PIER00122803        Google Scholar

5. Kishk, A. A., A. W. Glisson, G. P. Junker, W. M. Ave, and E. Segundo, "Bandwidth enhancement for split cylindrical dielectric resonator antennas," Progress In Electromagnetics Research, Vol. 33, 97-118, 2001.
doi:10.1080/09500349608232782        Google Scholar

6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," J. Mod. Opt., 773-793, 1996.
doi:10.1364/JOSAB.27.001603        Google Scholar

7. Teixeira, F. L., H. Odabasi, and K. F. Warnick, "Anisotropic metamaterial blueprints for cladding control of waveguide modes," J. Opt. Soc. Am. B, Vol. 27, 1603, 2010.        Google Scholar

8. McCall, M., J. B. Pendry, V. Galdi, Y. Lai, S. A. R. Horsley, J. Li, J. Zhu, R. C. Mitchell-Thomas, O. Quevedo-Teruel, P. Tassin, V. Ginis, E. Martini, G. Minatti, S. Maci, M. Ebrahimpouri, Y. Hao, P. Kinsler, J. Gratus, J. M. Lukens, A. M. Weiner, U. Leonhardt, I. I. Smolyaninov, V. N. Smolyaninova, R. T. Thompson, M. Wegener, M. Kadic, and S. A. Cummer, "Roadmap on transformation optics," J. Opt., Vol. 20, No. 6, United Kingdom, 2018.
doi:10.1016/S0079-6638(08)00202-3        Google Scholar

9. Leonhardt, U. and T. G. Philbin, "Chapter 2 Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1017/S0305004100012664        Google Scholar

10. Van Dantzig, D., "The fundamental equations of electromagnetism, independent of metrical geometry," Math. Proc. Cambridge Philos. Soc., Vol. 30, 421-427, 1934.
doi:10.1163/156939399X01104        Google Scholar

11. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, 665-686, 1999.
doi:10.1109/PROC.1981.12048        Google Scholar

12. Deschamps, G. A., "Electromagnetics and differential forms," Proc. IEEE, Vol. 69, 676-696, 1981.
doi:10.1016/j.photonics.2007.07.013        Google Scholar

13. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell's equations," Photonics Nanostructures - Fundam. Appl., Vol. 6, 87-95, 2008.
doi:10.1126/science.1125907        Google Scholar

14. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.3390/en3071335        Google Scholar

15. Yang, J., M. Huang, C. Yang, J. Peng, and R. Zong, "Metamaterial electromagnetic superabsorber with arbitrary geometries," Energies, Vol. 3, No. 7, 1335-1343, 2010.
doi:10.1063/1.5045489        Google Scholar

16. Vasantharajan, G., N. Yogesh, and V. Subramanian, "Beam steering based on coordinate transformation of Fermat spiral configurations," AIP Adv., Vol. 9, 075217, 2019.
doi:10.1103/PhysRevLett.105.266807        Google Scholar

17. Fernandez-Domnguez, A. I., S. A. Maier, and J. B. Pendry, "Collection and concentration of light by touching spheres: A transformation optics approach," Phys. Rev. Lett., Vol. 105, 266807, 2010.
doi:10.1103/PhysRevB.77.035122        Google Scholar

18. Tsang, M. and D. Psaltis, "Magnifying perfect lens and superlens design by coordinate transformation," Phys. Rev. B, Vol. 77, 035122, 2008.
doi:10.2528/PIER15112505        Google Scholar

19. Dehdashti, S., H. Wang, Y. Jiang, Z. Xu, and H. Chen, "Review of black hole realization in laboratory base on transformation optics," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.
doi:10.1103/PhysRevA.90.043812        Google Scholar

20. Kadic, M., G. Dupont, S. Enoch, and S. Guenneau, "Invisible waveguides on metal plates for plasmonic analogs of electromagnetic wormholes," Phys. Rev. A, Vol. 90, 043812, 2014.
doi:10.1103/PhysRevLett.100.063903        Google Scholar

21. Rahm, M., S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, "Optical design of reflectionless complex media by finite embedded coordinate transformations," Phys. Rev. Lett., Vol. 100, 063903, 2008.
doi:10.1016/j.ijleo.2010.10.023        Google Scholar

22. Zhou, J., M. Li, L. Xie, and D. Liu, "Design of a new kind of polarization splitter based on transformation optics," Optik, Vol. 122, 1672-1675, 2011.
doi:10.1063/1.5020204        Google Scholar

23. Haddad, H., R. Loison, R. Gillard, A. Harmouch, and A. Jrad, "A combination of transformation optics and surface impedance modulation to design compact retrodirective reflectors," AIP Adv., Vol. 8, 025114, 2018.
doi:10.1364/OE.417678        Google Scholar

24. Pakniyat, S., S. Jam, A. Yahaghi, and G. W. Hanson, "Reflectionless plasmonic right-angled waveguide bend and divider using graphene and transformation optics," Optics Express, Vol. 29, No. 6, 9589-9598, 2021.        Google Scholar

25. Xu, L. and H. Chen, "Conformal transformation optics," Nat. Photonics, Vol. 9, 15-23, 2014.
doi:10.1364/OE.18.006089        Google Scholar

26. Chang, Z., X. Zhou, J. Hu, and G. Hu, "Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries," Optics Express, Vol. 18, No. 6, 6089, 2010.        Google Scholar

27. Whiteman, J. R., The Mathematics of Finite Elements and Applications, John Wiley and Sons, 1998, http://www.comsol.com.
doi:10.1016/j.photonics.2015.04.003

28. Yogesh, N., Q. Yu, and Z. Ouyang, "Single- and multi-beam confinement of electromagnetic waves in a photonic crystal open cavity providing rapid heating and high temperatures," Photonics Nanostructures - Fundam. Appl., Vol. 15, 89-98, 2015.
doi:10.1364/OE.22.002725        Google Scholar

29. Cao, Y., J. Xie, Y. Liu, and Z. Liu, "Modeling and optimization of photonic crystal devices based on transformation optics method," Optics Express, Vol. 22, 2725-2734, 2014.
doi:10.1063/1.4794940        Google Scholar

30. Yan, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
doi:10.2528/PIER12050206        Google Scholar

31. Yogesh, N. and V. Subramanian, "Spatial beam compression and effective beam injection using triangular gradient index profile photonic crystals," Progress In Electromagnetics Research, Vol. 129, 51-67, 2012.
doi:10.1002/adma.201605198        Google Scholar

32. Zhou, N., C. Liu, J. A. Lewis, and D. Ham, "Gigahertz electromagnetic structures via direct ink writing for radio-frequency oscillator and transmitter applications," Adv. Mater., Vol. 29, No. 15, 1605198, 2017.
doi:10.1002/adma.201800940        Google Scholar

33. Velasco-Hogan, A., J. Xu, and M. A. Meyers, "Additive manufacturing as a method to design and optimize bioinspired structures," Adv. Mater., Vol. 30, No. 52, 1800940, 2018.        Google Scholar

34. Poyanco, J. M., F. Pizarro, and E. Rajo-Iglesias, "Wideband hyperbolic flat lens in the Ka-band based on 3D-printing and transformation optics," Appl. Phys. Lett., Vol. 118, 2021.        Google Scholar