1. Rappaport, T. S., et al. "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013, doi: 10.1109/ACCESS.2013.2260813.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
2. Abumunshar, A. J., K. Sertel, and N. K. Nahar, "Millimeter-wave tightly-coupled phased array with integrated MEMS phase shifters," Progress In Electromagnetics Research C, Vol. 110, 135-150, 2021.
doi:10.2528/PIERC20113004 Google Scholar
3. Dadgarpour, B. Z., B. S. Virdee, and T. A. Denidni, "Beam tilting antenna using integrated metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2874-2879, May 2014, doi: 10.1109/TAP.2014.2308516.
doi:10.1109/TAP.2014.2308516 Google Scholar
4. Mantash, M., A. Kesavan, and T. A. Denidni, "Beam-tilting endfire antenna using a single-layer FSS for 5G communication networks," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 1, 29-33, Jan. 2018, doi: 10.1109/LAWP.2017.2772222.
doi:10.1109/LAWP.2017.2772222 Google Scholar
5. Dale Ake, W., M. Pour, and A. Mehrabani, "Asymmetric half-bowtie antennas with tilted beam patterns," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 2, 738-744, Feb. 2019, doi: 10.1109/TAP.2018.2880078.
doi:10.1109/TAP.2018.2880078 Google Scholar
6. Mosca, S., F. Bilotti, A. Toscano, and L. Vegni, "A novel design method for Blass matrix beam-forming networks," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 2, 225-232, Feb. 2002, doi: 10.1109/8.997999.
doi:10.1109/8.997999 Google Scholar
7. Fakoukakis, F. and G. Kyriacou, "Novel nolen matrix based beamforming networks for series-fed low SLL multibeam antennas," Progress In Electromagnetics Research B, Vol. 51, 33-64, 2013.
doi:10.2528/PIERB13011605 Google Scholar
8. Rahimian, A., Y. Alfadhl, and A. Alomainy, "Design and performance analysis of millimetre-wave Rotman lens-based array beamforming networks for large-scale antenna subsystems," Progress In Electromagnetics Research C, Vol. 78, 159-171, 2017.
doi:10.2528/PIERC17071703 Google Scholar
9. Lian, J., Y. Ban, Z. Chen, B. Fu, and C. Xiao, "SIW folded Cassegrain lens for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 7, No. 4, 583-586, Apr. 2018, doi: 10.1109/LAWP.2018.2804923.
doi:10.1109/LAWP.2018.2804923 Google Scholar
10. Butler, J. and R. Lowe, "Beam-forming matrix simplifies design of electronically scanned antennas," Electronic Design, Vol. 9, 170-173, Apr. 12, 1961. Google Scholar
11. Panduro, M. A. and C. del Rio-Bocio, "Simplifying the feeding network for multibeam circular antenna arrays by using corps," Progress In Electromagnetics Research Letters, Vol. 21, 119-128, 2011.
doi:10.2528/PIERL11010205 Google Scholar
12. Panduro, M. A. and C. del Ro-Bocio, "Design of beam-forming networks using CORPS and evolutionary optimization," International Journal of Electronics and Communications, Vol. 63, No. 5, 353-365, 2009, doi: 10.1016/j.aeue.2008.02.009.
doi:10.1016/j.aeue.2008.02.009 Google Scholar
13. Panduro, M. A. and C. del Río-Bocio, "Design of beam-forming networks for scannable multi-beam antenna arrays using CORPS," Progress In Electromagnetics Research, Vol. 84, 173-188, 2008.
doi:10.2528/PIER08070403 Google Scholar
14. Juárez, E., M. A. Panduro, A. Reyna, D. H. Covarrubias, A. Mendez, and E. Murillo, "Design of concentric ring antenna arrays based on subarrays to simplify the feeding system," Symmetry, Vol. 12, No. 6, 970, Jun. 2020, https://doi.org/10.3390/sym12060970.
doi:10.3390/sym12060970 Google Scholar
15. Tseng, C., C. Chen, and T. Chu, "A low-cost 60-GHz switched-beam patch antenna array with butler matrix network," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 432-435, 2008, doi: 10.1109/LAWP.2008.2001849.
doi:10.1109/LAWP.2008.2001849 Google Scholar
16. Karamzadeh, S., V. Rafiei, and M. Kartal, "Beam steering fabry perot array antenna for MM-wave application," Progress In Electromagnetics Research M, Vol. 91, 81-89, 2020.
doi:10.2528/PIERM20020101 Google Scholar
17. Ashraf, N., A.-R. Sebak, and A. A. Kishk, "PMC packaged single-substrate 4 × 4 butler matrix and double-ridge gap waveguide horn antenna array for multibeam applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 1, 248-261, Jan. 2021, doi: 10.1109/TMTT.2020.3022092.
doi:10.1109/TMTT.2020.3022092 Google Scholar
18. Trinh-Van, S., J. M. Lee, Y. Yang, K. Lee, and K. C. Hwang, "A sidelobe-reduced, four-beam array antenna fed by a modified 4 × 4 butler matrix for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 7, 4528-4536, Jul. 2019, doi: 10.1109/TAP.2019.2905783.
doi:10.1109/TAP.2019.2905783 Google Scholar
19. Lian, J., Y. Ban, C. Xiao, and Z. Yu, "Compact substrate-integrated 4 × 8 butler matrix with sidelobe suppression for millimeter-wave multibeam application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 928-932, May 2018, doi: 10.1109/LAWP.2018.2825367.
doi:10.1109/LAWP.2018.2825367 Google Scholar
20. Cao, Y., K. Chin, W. Che, W. Yang, and E. S. Li, "A compact 38 GHz multibeam antenna array with multifolded butler matrix for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2996-2999, 2017, doi: 10.1109/LAWP.2017.2757045.
doi:10.1109/LAWP.2017.2757045 Google Scholar
21. Balanis, C. A., Antenna Theory --- Analysis and Design, 3rd Ed., John Wiley & Sons, Inc., 2005.