1. Brinkmann, R., O. Behr, I. Niermann, and M. Reich (eds.), Entwicklung von Methoden zur Unter-suchung und Reduktion des Kollisionsrisikos von Fledermäusen an Onshore-Windenergieanlagen: Ergebnisse eines Forschungsvorhabens, Umwelt und Raum, Schriftenreihe Institut für Umweltplanung, 2011.
2. Saidur, R., N. A. Rahim, M. R. Islam, and K. H. Solangi, "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Vol. 15, No. 5, 2423-2430, June 2011.
doi:10.1016/j.rser.2011.02.024 Google Scholar
3. Rydell, J., H. Engström, A. Hedenström, J. K. Larsen, J. Pettersson, and M. Green, The Effect of Wind Power on Birds and Bats - A Synthesis, 6511, Swedish Environmental Protection Agency, 2012.
4. Grünkorn, T., J. Blew, T. Coppack, O. Krüger, G. Nehls, A. Potiek, M. Reichenbach, J. von Rönn, H. Timmermann, and S.Weitekamp, Ermittlung Der Kollisionsraten von (Greif) Vögeln Und Schaffung Planungsbezogener Grundlagen Für Die Prognose Und Bewertung Des Kollisionsrisikos Durch Windenergieanlagen (PROGRESS). Schlussbericht Zum Durch Das Bundesministerium Für Wirtschaft Und Energie (BMWi) Im Rahmen Des 6. Energieforschungsprogrammes Der Bundesregierung Geförderten Verbundvorhaben PROGRESS, FKZ 0325300A-D, 2016.
5. Bulling, L., D. Sudhaus, D. Schnittker, E. Schuster, J. Biehl, and F. Tucci, Vermeidungsma-maβnahmen Bei Der Planung Und Genehmigung von Windenergieanlagen - Bundesweiter Katalog von Maβnahmen Zur Verhinderung Des Eintritts von Artenschutzrechtlichen Verbotstatbeständen Nach s 44 BNatSchG, Fachagentur Windenergie an Land, 2015.
6. Mao, X., J. K. Chow, P. S. Tan, K.-F. Liu, J. Wu, Z. Su, Y. H. Cheong, G. L. Ooi, C. C. Pang, and Y.-H. Wang, "Domain randomization-enhanced deep learning models for bird detection," Scientific Reports, Vol. 11, No. 1, 639, December 2021.
doi:10.1038/s41598-020-80101-x Google Scholar
7. Niemi, J. and J. T. Tanttu, "Deep learning-based automatic bird identification system for offshore wind farms," Wind Energy, Vol. 23, No. 6, 1394-1407, 2020.
doi:10.1002/we.2492 Google Scholar
8. McClure, C. J. W., B. W. Rolek, L. Dunn, J. D. McCabe, L. Martinson, and T. Katzner, "Eagle fatalities are reduced by automated curtailment of wind turbines," Journal of Applied Ecology, Vol. 58, No. 3, 446-452, 2021.
doi:10.1111/1365-2664.13831 Google Scholar
9. Linder, A. C., H. Lyhne, B. Laubek, D. Bruhn, and C. Pertoldi, "Quantifying raptors' flight behavior to assess collision risk and avoidance behavior to wind turbines," Preprints, 2021, doi: 10.20944/preprints202102.0391.v1. Google Scholar
10. Rahman, S. and D. A. Robertson, "Classification of drones and birds using convolutional neural networks applied to radar micro-doppler spectrogram images," IET Radar, Sonar and Navigation, Vol. 14, No. 5, 653-661, 2020.
doi:10.1049/iet-rsn.2019.0493 Google Scholar
11. Björklund, S. and N. Wadströmer, "Target detection and classification of small drones by deep learning on radar micro-doppler," 2019 International Radar Conference (RADAR), 1-6, 2019. Google Scholar
12. Li, D., R. Chen, J. Gong, and J. Yan, "Comparison of radar signatures based on flight morphology for large birds and small birds," IET Radar, Sonar and Navigation, Vol. 14, No. 4, 1365-1369, September 2020. Google Scholar
13. Zaugg, S., G. Saporta, E. van Loon, H. Schmaljohann, and F. Liechti, "Automatic identification of bird targets with radar via patterns produced by wing apping," Journal of The Royal Society Interface, Vol. 5, No. 26, 1041-1053, September 2008.
doi:10.1098/rsif.2007.1349 Google Scholar
14. Zadeh, A. T., M. Mälzer, D. H. Nguyen, J. Moll, and V. Krozer, "Radar-based detection of birds at wind turbines: Numerical analysis for optimum coverage," 2021 15th European Conference on Antennas and Propagation (EuCAP), 1-5, 2021. Google Scholar
15. Nguyen, D. H., J. Ala-Laurinaho, J. Moll, V. Krozer, and G. Zimmer, "Improved sidelobe suppression microstrip patch antenna array by uniform feeding networks," IEEE Transactions on Antennas and Propagation, 2020. Google Scholar
16. Lipa, B. J. and D. E. Barrick, "FMCW signal processing,", 1990. Google Scholar
17. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Wiley & Sons Inc., 2012.
18. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithm and Implementation, Artech House Publishers, 2005.
19. Lacomme, P., J.-P. Hardange, J.-C. Marchais, and E. Normant, "Noise and spurious signals," Air and Spaceborne Radar Systems, 47-58, 2001.
doi:10.1016/B978-189112113-5.50007-3 Google Scholar
20. Crecraft, D. I. and S. Gergely, Analog Electronics, 2002.
21. Scherr, S., R. Afroz, S. Ayhan, S. Thomas, T. Jaeschke, S. Marahrens, A. Bhutani, M. Pauli, N. Pohl, and T. Zwick, "Influence of radar targets on the accuracy of FMCW radar distance measurements," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 10, 3640-3647, 2017.
doi:10.1109/TMTT.2017.2741961 Google Scholar
22. Dakin, B. G. R., "The biophysics of bird ight: Functional relationships integrate aerodynamics, morphology, kinematics, muscles, and sensors," Canadian Journal of Zoology, Vol. 93, No. 12, 964, 2015. Google Scholar
23. Rahman, S. and D. A. Robertson, "In-flight RCS measurements of drones and birds at K-band and W-band," IET Radar, Sonar & Navigation, Vol. 13, No. 2, 300-309, 2019.
doi:10.1049/iet-rsn.2018.5122 Google Scholar
24. Urmy, S. S. and J. D. Warren, "Quantitative ornithology with a commercial marine radar: Standard-target calibration, target detection and tracking, and measurement of echoes from individuals and ocks," Methods in Ecology and Evolution, Vol. 8, No. 7, 860-869, November 2016.
doi:10.1111/2041-210X.12699 Google Scholar
25. Jahangir, M., B. I. Ahmad, and C. J. Baker, "Robust drone classification using two-stage decision trees and results from sesar safir trials," 2020 IEEE International Radar Conference (RADAR), 636-641, 2020.
doi:10.1109/RADAR42522.2020.9114870 Google Scholar
26. Bruderer, B., D. Peter, A. Boldt, and F. Liechti, "Wing-beat characteristics of birds recorded with tracking radar and cine camera," Ibis, Vol. 152, No. 2, 272-291, April 2010.
doi:10.1111/j.1474-919X.2010.01014.x Google Scholar
27. Taylor, L. A., G. K. Taylor, B. Lambert, J. A. Walker, D. Biro, and S. J. Portugal, "Birds invest wingbeats to keep a steady head and reap the ultimate benefits of ying together," PLOS Biology, Vol. 17, No. 6, e3000299, June 2019.
doi:10.1371/journal.pbio.3000299 Google Scholar
28. Mirkovic, D., P. M. Stepanian, J. F. Kelly, and P. B. Chilson, "Electromagnetic model reliably predicts radar scattering characteristics of airborne organisms," Scientific Reports, Vol. 6, No. 1, 35637, December 2016.
doi:10.1038/srep35637 Google Scholar
29. Bruderer, B. and A. G. Popa-Lisseanu, "Radar data on wing-beat frequencies and ight speeds of two bat species," Acta Chiropterologica, Vol. 7, No. 1, 73-82, June 2005.
doi:10.3161/1733-5329(2005)7[73:RDOWFA]2.0.CO;2 Google Scholar
30. Ostertagová, E., "Modelling using polynomial regression," Procedia Engineering, Vol. 48, 500-506, Modelling of Mechanical and Mechatronics Systems, 2012. Google Scholar