Vol. 117
Latest Volume
All Volumes
PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-01-02
Wideband Four-Port Compact Millimeter-Wave MIMO Antenna Configuration through Defected Ground Structure for Forthcoming 5G Handheld Devices
By
Progress In Electromagnetics Research C, Vol. 117, 173-184, 2021
Abstract
We presented a miniaturized defected ground structure-based millimeter-wave (MMW) contemporary MIMO antenna for 5G smart applications devices. The proposed MIMO antenna offers many advantages including high gain, compactness, planar geometry, wide impedance bandwidth, and reduced mutual coupling effects performance. The top layer of the proposed four-port MIMO antenna design comprises 1x2 rectangular patch array structures, with each placed at the middle of a 20x20 mm2 substrate of material (RO4350B) having thickness of 0.76 mm and loss tangent of 0.0037. For miniaturization and better performance, both the ground layer and radiating patches are defected with slots of a rectangular shape while an E-shaped slot is placed at the center of the ground plane. The operating impedance bandwidth of the proposed antenna ranges from 26.4 to 30.9 GHz incorporating the dominant portion of the mm-wave band. The proposed MIMO antenna is also characterized by the fundamental MIMO performance metrics such as Envelope Correlation Coefficient (ECC) which is less than 0.12 for any two-element array that encounters the mandatory standard of <0.5, high Diversity gain (DG) reaching its ideal value of 10 as well as minimum isolation of -19 dB with a total efficiency of 85% at 28 GHz. These characteristics make the proposed compact four-port MIMO antenna one of the best candidates to be used in 5G portable devices.
Citation
Abdullah Hamza Ahmad MuhibUr Rahman Muhammad Haris Muhammad Salman , "Wideband Four-Port Compact Millimeter-Wave MIMO Antenna Configuration through Defected Ground Structure for Forthcoming 5G Handheld Devices," Progress In Electromagnetics Research C, Vol. 117, 173-184, 2021.
doi:10.2528/PIERC21111801
http://www.jpier.org/PIERC/pier.php?paper=21111801
References

1. Yao, M., M. M. Sohul, X. Ma, V. Marojevic, and J. H. Reed, "Sustainable green networking: Exploiting degrees of freedom towards energy-efficient 5G systems," Wireless Netw., Vol. 25, No. 3, 951-960, 2019.
doi:10.1007/s11276-017-1626-7

2. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813

3. Yilmaz, T. and O. B. Akan, "On the use of low terahertz band for 5G indoor mobile networks," Comput. Electr. Eng., Vol. 48, 164-173, 2015.
doi:10.1016/j.compeleceng.2015.06.012

4. Rahman, M., M. Naghshvarian Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Bandwidth enhancement and frequency scanning array antenna using novel UWB filter integration technique for OFDM UWB radar applications in wireless vital signs monitoring," Sensors, Vol. 18, 3155, 2018.
doi:10.3390/s18093155

5. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Comm. Mag., Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750

6. Khan, T., M. Rahman, A. Akram, Y. Amin, and H. Tenhunen, "A low-cost CPW-fed multiband frequency reconfigurable antenna for wireless applications," Electronics, Vol. 8, 900, 2019.
doi:10.3390/electronics8080900

7. Kumar, M. N. and T. Shanmuganantham, "Division shaped substrate integrated waveguide slot antenna for millimeter wireless/automotive radar applications," Comput. Electr. Eng., Vol. 71, 667-675, 2018.
doi:10.1016/j.compeleceng.2018.08.011

8. Naqvi, A. H., J. H. Park, C. W. Baek, and S. Lim, "V-band end-fire radiating planar micromachined helical antenna using Through-Glass Silicon Via (TGSV) technology," IEEE Access, Vol. 26, No. 7, 87907-87915, Jun. 2019.
doi:10.1109/ACCESS.2019.2925073

9. Saad, A. A. and H. A. Mohamed, "Printed millimeter-wave MIMO-based slot antenna arrays for 5G networks," AEU --- Int. J. Electron. Commun., Vol. 99, 59-69, 2019.
doi:10.1016/j.aeue.2018.11.029

10. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research, Vol. 78, 73-79, 2018.
doi:10.2528/PIERL18070303

11. Hussain, N., M. J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

12. Khalid, M., et al., "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020.
doi:10.3390/electronics9010071

13. Jilani, S. F. and A. Alomainy, "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw. Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467

14. Tu, D. T. T., N. T. B. Phuong, P. D. Son, and V. Van Yem, "Improving characteristics of 28/38 GHz MIMO antenna for 5G applications by using double-side EBG structure," J. Commun., Vol. 14, No. 1, 1-8, 2019.
doi:10.12720/jcm.14.1.1-8

15. Rahman, M., A. Haider, and M. Naghshvarianjahromi, "A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 482-486, Mar. 2020.
doi:10.1109/LAWP.2020.2972025

16. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 4, 747-751, 2019.
doi:10.1109/LAWP.2019.2901961

17. Khan, T. and M. Rahman, "Design of low-profile frequency reconfigurable antenna for multiband applications," International Journal of Electronics Letters, 1-18, 2020.
doi:10.1080/21681724.2020.1818836

18. Parvathi, K. S. and S. R. Gupta, "Novel dual-band EBG structure to reduce mutual coupling of air gap based MIMO antenna for 5G application," AEU --- International Journal of Electronics and Communications, Vol. 138, 153902, 2021.
doi:10.1016/j.aeue.2021.153902

19. Rahman, M., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, 2174, 2017.
doi:10.3390/s17102174

20. Rahman, M., M. Nagshvarian Jahromi, S. S. Mirjavadi, and A. M. Hamouda, "Compact UWB band-notched antenna with integrated bluetooth for personal wireless communication and UWB applications," Electronics, Vol. 8, 158, 2019.
doi:10.3390/electronics8020158

21. Park, J., M. Rahman, and H. N. Chen, "Isolation enhancement of wide-band MIMO array antennas utilizing resistive loading," IEEE Access, Vol. 7, 81020-81026, 2019.
doi:10.1109/ACCESS.2019.2923330

22. Iffat Naqvi, S., N. Hussain, A. Iqbal, M. Rahman, M. Forsat, S. S. Mirjavadi, and Y. Amin, "Integrated LTE and millimeter-wave 5G MIMO antenna system for 4G/5G wireless terminals," Sensors, Vol. 20, 3926, 2020.
doi:10.3390/s20143926

23. Hussain, N., M. Jeong, J. Park, and N. Kim, "A broadband circularly polarized Fabry-Perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019.
doi:10.1109/ACCESS.2019.2908441

24. Zhang, Y., J. Deng, M. Li, D. Sun, and L. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 4, 747-751, 2019.
doi:10.1109/LAWP.2019.2901961

25. Ikram, M., Y. Wang, M. S. Sharawi, and A. Abbosh, "A novel connected PIFA array with MIMO configuration for 5G mobile applications," 2018 Australian Microwave Symposium (AMS), 19-20, Brisbane, QLD, 2018.

26. Iqbal, A., et al., "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019.
doi:10.1109/ACCESS.2019.2933913