Vol. 107
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-01-21
Load-Independence-Based Composite Compensation Network and Control Strategy for Wireless Electric Vehicle Charging System
By
Progress In Electromagnetics Research M, Vol. 107, 167-179, 2022
Abstract
Nowadays, wireless charging for electric vehicles has become popular in numerous situations by reason of safety and convenience. In this article, a composite compensation network and the corresponding charging control strategy aiming at optimizing the transmitting efficiency of the system and achieving constant current (CC) output and constant voltage (CV) output are proposed. First, the composite compensation network is analyzed by the equivalent circuit model as a reference. Second, based on the realization of CC/CV output, by analyzing the relationship between charging current/voltage and duty cycles of both DC-DC converters, the optimal duty cycles of both converters can be found. The purpose is to obtain the maximum transmission efficiency. Finally, the experimental results show good agreement with theoretical analysis, proving that the proposal can realize CC/CV charging and optimize the transmission efficiency.
Citation
Wenzhou Lu, Runmin Liu, Xiangxiu Chen, Jian Zhao, Qigao Fan, and Chendawei Zhang, "Load-Independence-Based Composite Compensation Network and Control Strategy for Wireless Electric Vehicle Charging System," Progress In Electromagnetics Research M, Vol. 107, 167-179, 2022.
doi:10.2528/PIERM21112001
References

1. Budhia, M., J. T. Boys, G. A. Covic, and C. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 318-328, 2013.
doi:10.1109/TIE.2011.2179274

2. Mohammad, M., S. Choi, Z. Islam, S. Kwak, and J. Baek, "Core design and optimization for better misalignment tolerance and higher range of wireless charging of PHEV," IEEE Transactions on Transportation Electrification, Vol. 3, No. 2, 445-453, 2017.
doi:10.1109/TTE.2017.2663662

3. Kim, S., G. A. Covic, and J. T. Boys, "Tripolar pad for inductive power transfer systems for EV charging," IEEE Transactions on Transportation Electrification, Vol. 32, No. 7, 5045-5057, 2017.

4. Lee, I., N. Kim, and I. Cho, "Design of a patterned soft magnetic structure to reduce magnetic flux leakage of magnetic induction wireless power transfer systems," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 6, 1856-1863, 2017.
doi:10.1109/TEMC.2017.2690967

5. Kan, T., F. Lu, T. Nguyen, P. P. Mercier, and C. C. Mi, "Integrated coil design for EV wireless charging systems using LCC compensation topology," IEEE Transactions on Power Electronics, Vol. 33, No. 11, 9231-9241, 2018.
doi:10.1109/TPEL.2018.2794448

6. Kan, T., T. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, "A new integration method for an electric vehicle wireless charging system using lcc compensation topology: Analysis and design," IEEE Transactions on Power Electronics, Vol. 32, No. 2, 1638-1650, 2017.
doi:10.1109/TPEL.2016.2552060

7. Deng, J., W. Li, T. D. Nguyen, S. Li, and C. C. Mi, "Compact and efficient bipolar coupler for wireless power chargers: Design and analysis," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6130-6140, 2015.
doi:10.1109/TPEL.2015.2417115

8. Hu, J., F. Lu, and C. Zhu, "Hybrid energy storage system of an electric scooter based on wireless power transfer," IEEE Transactions on Industrial Informatics, Vol. 14, No. 9, 4169-4178, 2018.
doi:10.1109/TII.2018.2806917

9. Fu, M., H. Yin, X. Zhu, and C. Ma, "Analysis and tracking of optimal load in wireless power transfer systems," IEEE Transactions on Power Electronics, Vol. 30, No. 7, 3952-3963, 2015.
doi:10.1109/TPEL.2014.2347071

10. Mai, R., Y. Liu, Y. Li, P. Yue, G. Cao, and Z. He, "An active-rectifier-based maximum efficiency tracking method using an additional measurement coil for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 33, No. 1, 716-728, 2018.
doi:10.1109/TPEL.2017.2665040

11. Berger, A., M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos, and M. Huemer, "A wireless charging system applying phase-shift and amplitude control to maximize efficiency and extractable power," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6338-6348, 2015.
doi:10.1109/TPEL.2015.2410216

12. Al-Haj Hussein, A. and I. Batarseh, "A review of charging algorithms for nickel and lithium battery chargers," IEEE Transactions on Vehicular Technology, Vol. 60, No. 3, 830-838, 2011.
doi:10.1109/TVT.2011.2106527

13. Li, Y., Q. Xu, T. Lin, J. Hu, Z. He, and R. Mai, "Analysis and design of load-independent output current or output voltage of a three-coil wireless power transfer system," IEEE Transactions on Transportation Electrification, Vol. 4, No. 2, 364-375, 2018.
doi:10.1109/TTE.2018.2808698

14. Tan, L., S. Pan, C. Xu, C. Yan, H. Liu, and X. Huang, "Study of constant current-constant voltage output wireless charging system based on compound topologies," Journal of Power Electronics, Vol. 17, No. 4, 1109-1116, 2017.

15. Cai, C., "Design and optimization of load-independent magnetic resonant wireless charging system for electric vehicles," IEEE Access, Vol. 6, 17264-17274, 2018.
doi:10.1109/ACCESS.2018.2810128

16. Chen, Y., Z. Kou, Y. Zhang, Z. He, R. Mai, and G. Cao, "Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles," IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 6, No. 3, 1581-1594, 2018.
doi:10.1109/JESTPE.2017.2782269

17. Mai, R., Y. Chen, Y. Zhang, N. Yang, G. Cao, and Z. He, "Optimization of the passive components for an S-LCC topology-based WPT system for charging massive electric bicycles," IEEE Transactions on Industrial Electronics, Vol. 65, No. 7, 5497-5508, 2018.
doi:10.1109/TIE.2017.2779437

18. Song, K., Z. Li, J. Jiang, and C. Zhu, "Constant current/voltage charging operation for series-series and series-parallel compensated wireless power transfer systems employing primary-side controller," IEEE Transactions on Power Electronics, Vol. 33, No. 9, 8065-8080, 2018.

19. Zhao, Q., A. Wang, J. Liu, and X. Wang, "The load estimation and power tracking integrated control strategy for dual-sides controlled LCC compensated wireless charging system," IEEE Access, Vol. 7, 75749-75761, 2019.
doi:10.1109/ACCESS.2019.2922329

20. Zhang, M., L. Tan, J. Li, and X. Huang, "The charging control and efficiency optimization strategy for WPT system based on secondary side controllable rectifier," IEEE Access, Vol. 8, 127993-128004, 2020.
doi:10.1109/ACCESS.2020.3007444

21. Huang, Z., C. Lam, and P. Mak, "A single-stage inductive-power-transfer converter for constant-power and maximum-efficiency battery charging," IEEE Transactions on Power Electronics, Vol. 35, No. 9, 8973-8984, 2020.
doi:10.1109/TPEL.2020.2969685

22. Huang, Z., S. Wong, and C. K. Tse, "Control design for optimizing efficiency in inductive power transfer systems," IEEE Transactions on Power Electronics, Vol. 33, No. 5, 4523-4534, 2018.
doi:10.1109/TPEL.2017.2724039

23. Li, Z., K. Song, and J. Jiang, "Constant current charging and maximum efficiency tracking control scheme for supercapacitor wireless charging," IEEE Transactions on Power Electronics, Vol. 33, No. 10, 9088-9100, 2018.
doi:10.1109/TPEL.2018.2793312