1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/JSAC.2014.2328098 Google Scholar
2. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
doi:10.3390/s18103194 Google Scholar
3. Federal Communications Commission (FCC), FCC Establishes Procedures for First 5G Spectrum Auctions, Aug. 2018. Google Scholar
4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Tech., 1-16, 2018. Google Scholar
5. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813 Google Scholar
6. Dehos, C., J. González, A. Domenico, D. Kténas, and L. Dussopt, "Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, 88-95, 2014.
doi:10.1109/MCOM.2014.6894457 Google Scholar
7. Jamaluddin, M. H., M. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress in Electromagnetics Research, Vol. 63, 53-61, 2016. Google Scholar
8. Yashchyshyn, Y., K. Derzakowski, O. Bogdan, et al. "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 2, 225-228, 2018.
doi:10.1109/LAWP.2017.2781262 Google Scholar
9. Bang, J., J. Choi., et al. "A SAR reduced MM-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5g cellular handsets," IEEE Antennas Wirel. Propag. Lett., 2018.
doi:10.1109/LAWP.2017.2781262 Google Scholar
10. Li, W. T., M. Wei, B. Badamchi, H. Subbaraman, and X. Shi, "A novel tri-band reconfigurable microstrip patch antenna," Frequenz, Vol. 74, No. 7-8, 247-253, 2020.
doi:10.1515/freq-2019-0130 Google Scholar
11. Yu, B., K. Yang, C.-Y.-D. Sim, et al. "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, 2018.
doi:10.1109/TAP.2017.2772084 Google Scholar
12. Sodré, Jr., A. C., I. F. da Costa, R. A. dos Santos, H. R. D. Filgueiras, and D. H. Spadoti, "Waveguide-based antenna arrays for 5G networks," International Journal of Antennas and Propagation, Vol. 2018, Article ID 5472045, 10 pages, 2018. Google Scholar
13. Ullah, H. and F. A. Tahir, "A broadband wire hexagon antenna array for future 5G communications in 28 GHz band," Microw. Opt. Technol. Lett., 1-6, 2018. Google Scholar
14. Mao, C., M. Khalily, P. Xiao, T. W. C. Brown, and S. Gao, "Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 160-168, Jan. 2019.
doi:10.1109/TAP.2018.2874796 Google Scholar
15. Jilani, S. F., A. Alomainy, et al. "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw. Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467 Google Scholar
16. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wirel. Commun., Vol. 24, 106-112, 2017.
doi:10.1109/MWC.2016.1400374RP Google Scholar
17. Hong, W., K.-H. Baek, Y. Lee, et al. "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/MCOM.2014.6894454 Google Scholar
18. Roh, W., J. Y. Seol, J. H. Park, et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750 Google Scholar
19. Naqvi, S. A. and M. S. Khan, "Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands," Microw. Opt. Technol. Lett., Vol. 60, 325-330, 2018.
doi:10.1002/mop.30962 Google Scholar
20. Awan, W. A., A. Zaidi, N. Hussain, A. Iqbal, and A. Baghdad, "Stub loaded, low profile UWB antenna with independently controllable notch-bands," Microw. Opt. Technol. Lett., 1-8, 2019. Google Scholar
21. Naqvi, S. A., "Miniaturized triple band and ultra-wideband (UWB) fractal antennas for UWB applications," Microw. Opt. Technol. Lett., Vol. 59, 1542-1546, 2017.
doi:10.1002/mop.30582 Google Scholar
22. "Rogers Corporation,", www.rogerscorp.com, accessed Feburary 2021. Google Scholar
23. Balanis, C. A., Antenna Theory-Analysis and Design, Wiley, 1997.
24. Ansys HFSS, ver. 2016.2, Ansys Corporation, Pittsburgh, PA, 2017.
25. "MACOM,", www.macom.com, accessed Feburary 2021. Google Scholar
26. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850 Google Scholar
27. Hussain, N., et al. "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU-International Journal of Electronics and Communications, Vol. 132, e153612, 2021.
doi:10.1016/j.aeue.2021.153612 Google Scholar