Vol. 108
Latest Volume
All Volumes
PIERM 137 [2026] PIERM 136 [2025] PIERM 135 [2025] PIERM 134 [2025] PIERM 133 [2025] PIERM 132 [2025] PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-20
On-Demand Frequency Switchable Antenna Array Operating at 24.8 and 28 GHz for 5G High-Gain Sensors Applications
By
Progress In Electromagnetics Research M, Vol. 108, 163-173, 2022
Abstract
A miniaturized in size linear multiple-input multiple-output (MIMO) antenna array operating on demand at 28 GHz and 24.8 GHz for 5G applications is presented and investigated in this research work. The antenna array has the capability to switch and operate efficiently from 28 GHz to 24.8 GHz with more than 15 dB gain at each frequency, having 2.1 GHz and 1.9 GHz bandwidth, respectively. The unit cell of the proposed antenna array consists of a transmission line (TL) fed circular patch connected with horizontal and vertical stubs. The vertical stubs are used to switch the operating frequency and mitigate the unwanted interaction between the adjacent elements of the antenna array to miniaturize the overall dimension of the array. The proposed antenna array is compared with the recent works published in the literature for 5G applications to demonstrate the features of miniaturization and high gain. The proposed array is a potential candidate for 5G sensors applications like cellular devices, drones, biotelemetry sensors, etc.
Citation
Wahaj Abbas Awan, Mohammad Soruri, Mohammad Alibakhshikenari, and Ernesto Limiti, "On-Demand Frequency Switchable Antenna Array Operating at 24.8 and 28 GHz for 5G High-Gain Sensors Applications," Progress In Electromagnetics Research M, Vol. 108, 163-173, 2022.
doi:10.2528/PIERM21121102
References

1. Andrews, J. G., S. Buzzi, W. Choi, et al. "What will 5G be?," IEEE J. Sel. Areas Commun., Vol. 32, No. 6, 1065-1082, 2014.
doi:10.1109/JSAC.2014.2328098        Google Scholar

2. Naqvi, A. H. and S. Lim, "Review of recent phased arrays for millimeter-wave wireless communication," Sensors, Vol. 18, No. 10, 3194, 2018.
doi:10.3390/s18103194        Google Scholar

3. Federal Communications Commission (FCC), FCC Establishes Procedures for First 5G Spectrum Auctions, Aug. 2018.        Google Scholar

4. Yang, B., Z. Yu, J. Lan, R. Zhang, J. Zhou, and W. Hong, "Digital beamforming-based massive MIMO transceiver for 5G millimeter-wave communications," IEEE Trans. Microw. Theory Tech., 1-16, 2018.        Google Scholar

5. Rappaport, T. S., S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, and F. Gutierrez, "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, 2013.
doi:10.1109/ACCESS.2013.2260813        Google Scholar

6. Dehos, C., J. González, A. Domenico, D. Kténas, and L. Dussopt, "Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems?," IEEE Commun. Mag., Vol. 52, 88-95, 2014.
doi:10.1109/MCOM.2014.6894457        Google Scholar

7. Jamaluddin, M. H., M. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress in Electromagnetics Research, Vol. 63, 53-61, 2016.        Google Scholar

8. Yashchyshyn, Y., K. Derzakowski, O. Bogdan, et al. "28 GHz switched-beam antenna based on S-PIN diodes for 5G mobile communications," IEEE Antennas Wirel. Propag. Lett., Vol. 17, No. 2, 225-228, 2018.
doi:10.1109/LAWP.2017.2781262        Google Scholar

9. Bang, J., J. Choi., et al. "A SAR reduced MM-wave beam-steerable array antenna with dual-mode operation for fully metal-covered 5g cellular handsets," IEEE Antennas Wirel. Propag. Lett., 2018.
doi:10.1109/LAWP.2017.2781262        Google Scholar

10. Li, W. T., M. Wei, B. Badamchi, H. Subbaraman, and X. Shi, "A novel tri-band reconfigurable microstrip patch antenna," Frequenz, Vol. 74, No. 7-8, 247-253, 2020.
doi:10.1515/freq-2019-0130        Google Scholar

11. Yu, B., K. Yang, C.-Y.-D. Sim, et al. "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, 2018.
doi:10.1109/TAP.2017.2772084        Google Scholar

12. Sodré, Jr., A. C., I. F. da Costa, R. A. dos Santos, H. R. D. Filgueiras, and D. H. Spadoti, "Waveguide-based antenna arrays for 5G networks," International Journal of Antennas and Propagation, Vol. 2018, Article ID 5472045, 10 pages, 2018.        Google Scholar

13. Ullah, H. and F. A. Tahir, "A broadband wire hexagon antenna array for future 5G communications in 28 GHz band," Microw. Opt. Technol. Lett., 1-6, 2018.        Google Scholar

14. Mao, C., M. Khalily, P. Xiao, T. W. C. Brown, and S. Gao, "Planar sub-millimeter-wave array antenna with enhanced gain and reduced sidelobes for 5G broadcast applications," IEEE Trans. Antennas Propag., Vol. 67, No. 1, 160-168, Jan. 2019.
doi:10.1109/TAP.2018.2874796        Google Scholar

15. Jilani, S. F., A. Alomainy, et al. "Millimetre-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw. Antennas Propag., Vol. 12, No. 5, 672-677, 2018.
doi:10.1049/iet-map.2017.0467        Google Scholar

16. Zhang, J., X. Ge, Q. Li, M. Guizani, and Y. Zhang, "5G millimeter-wave antenna array: Design and challenges," IEEE Wirel. Commun., Vol. 24, 106-112, 2017.
doi:10.1109/MWC.2016.1400374RP        Google Scholar

17. Hong, W., K.-H. Baek, Y. Lee, et al. "Study and prototyping of practically large-scale mmWave antenna systems for 5G cellular devices," IEEE Commun. Mag., Vol. 52, No. 9, 63-69, 2014.
doi:10.1109/MCOM.2014.6894454        Google Scholar

18. Roh, W., J. Y. Seol, J. H. Park, et al. "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Commun. Mag., Vol. 52, No. 2, 106-113, 2014.
doi:10.1109/MCOM.2014.6736750        Google Scholar

19. Naqvi, S. A. and M. S. Khan, "Design of a miniaturized frequency reconfigurable antenna for rectenna in WiMAX and ISM frequency bands," Microw. Opt. Technol. Lett., Vol. 60, 325-330, 2018.
doi:10.1002/mop.30962        Google Scholar

20. Awan, W. A., A. Zaidi, N. Hussain, A. Iqbal, and A. Baghdad, "Stub loaded, low profile UWB antenna with independently controllable notch-bands," Microw. Opt. Technol. Lett., 1-8, 2019.        Google Scholar

21. Naqvi, S. A., "Miniaturized triple band and ultra-wideband (UWB) fractal antennas for UWB applications," Microw. Opt. Technol. Lett., Vol. 59, 1542-1546, 2017.
doi:10.1002/mop.30582        Google Scholar

22. "Rogers Corporation,", www.rogerscorp.com, accessed Feburary 2021.        Google Scholar

23. Balanis, C. A., Antenna Theory-Analysis and Design, Wiley, 1997.

24. Ansys HFSS, ver. 2016.2, Ansys Corporation, Pittsburgh, PA, 2017.

25. "MACOM,", www.macom.com, accessed Feburary 2021.        Google Scholar

26. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2183-2186, 2017.
doi:10.1109/LAWP.2017.2703850        Google Scholar

27. Hussain, N., et al. "Compact wideband patch antenna and its MIMO configuration for 28 GHz applications," AEU-International Journal of Electronics and Communications, Vol. 132, e153612, 2021.
doi:10.1016/j.aeue.2021.153612        Google Scholar