Vol. 108
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-26
Left-Handed Material Inspired Multi-Layer Planar Antenna Design for Satellite Communication Applications
By
Progress In Electromagnetics Research M, Vol. 108, 201-211, 2022
Abstract
Investigations on radiation characteristics of multilayer antenna having embedment of left-handed material are presented. The proposed engineered comb-shaped structure exhibits both negative permittivity and permeability. The inset-fed patch antenna matched at 50 Ω incorporates a homogeneous array of multilayer comb-shaped resonators. The array demonstrates a major impact on antenna parameters such as resonance, gain, radiation pattern, voltage standing wave ratio, and bandwidth. The novelty in the presented design is that by merely modifying the physical parameters of the negative refractive index resonator, the antenna radiation property can be altered. An artificially realized left-handed stacked material possesses strong inductive and capacitive mutual-coupling. The variations in stacked conductive inclusion illustrate the considerable change in antenna resonance. The antenna resonates at 1.57 GHz, 2.48 GHz, and 3.4 GHz with a bandwidth of around 20.64%, 7.35%, and 4.40% respectively. The proposed antenna electrical size is 0.48λ x 0.56λ at a lower frequency. The antenna exhibits the gain of 3.8 dBi, 6.15 dBi, 4.54 dBi at 1.57 GHz, 2.48 GHz, and 3.4 GHz respectively. The proposed planar stacked negative refractive index-inspired patch antenna model can be utilized for L1 and S-band satellite and maritime operations.
Citation
Trushit K. Upadhyaya, Rajat Pandey, Upeshkumar Patel, Killol Pandya, Arpan Desai, Riki Patel, and Yogesh Kosta, "Left-Handed Material Inspired Multi-Layer Planar Antenna Design for Satellite Communication Applications," Progress In Electromagnetics Research M, Vol. 108, 201-211, 2022.
doi:10.2528/PIERM21121201
References

1. Veselago, V. G., "Electrodynamics of substances with simultaneously negative ε and μ," Usp. Fiz. Nauk., Vol. 92, 517, 1967.
doi:10.3367/UFNr.0092.196707d.0517

2. Pendry, J. B. and D. R. Smith, "Reversing light with negative refraction," Physics Today, Vol. 57, 37-43, 2004.
doi:10.1063/1.1784272

3. Ramakrishna, S. A., "Physics of negative refractive index materials," Reports on Progress in Physics, Vol. 68, No. 2, 449, 2005.
doi:10.1088/0034-4885/68/2/R06

4. Krowne, C. M. and Y. Zhang, Physics of Negative Refraction and Negative Index Materials, Springer-Verlag Berlin Heidelberg, 2007.
doi:10.1007/978-3-540-72132-1

5. Rajkumar, R. and U. K. Kommuri, "A triangular complementary split ring resonator based compact metamaterial antenna for multiband operation," Wireless Personal Communications, Vol. 101, No. 2, 1075-1089, 2018.
doi:10.1007/s11277-018-5749-7

6. Daniel, R. S., R. Pandeeswari, and S. Raghavan, "A compact metamaterial loaded monopole antenna with offset-fed microstrip line for wireless applications," AEU - International Journal of Electronics and Communications, Vol. 83, 88-94, 2018.
doi:10.1016/j.aeue.2017.08.030

7. Chaturvedi, D. and S. Raghavan, "A compact metamaterial-inspired antenna for WBAN application," Wireless Personal Communications, Vol. 105, No. 4, 1449-1460, 2019.
doi:10.1007/s11277-019-06153-z

8. Sahoo, R. and D. Vakula, "Compact metamaterial inspired conformal dual-band antenna loaded with meander lines and fractal shaped inductor for Wi-Fi and WiMAX applications," IET Microwaves, Antennas & Propagation, Vol. 13, No. 13, 2349-2359, 2019.
doi:10.1049/iet-map.2018.6008

9. Zhao, M., S. Zhu, J. Chen, X. Chen, and A. Zhang, "Broadband metamaterial aperture antenna for coincidence imaging in terahertz band," IEEE Access, Vol. 8, 121311-121318, 2020.
doi:10.1109/ACCESS.2020.3006929

10. Ma, Q., C. B. Shi, T. Y. Chen, M. Q. Qi, Y. B. Li, and T. J. Cui, "Broadband metamaterial lens antennas with special properties by controlling both refractive-index distribution and feed directivity," Journal of Optics, Vol. 20, No. 4, 045101, 2018.
doi:10.1088/2040-8986/aaacbf

11. Ren, J., W. Jiang, and S. Gong, "Low RCS and broadband metamaterial-based low-profile antenna using PCM," IET Microwaves, Antennas & Propagation, Vol. 12, No. 11, 1793-1798, 2018.
doi:10.1049/iet-map.2018.0162

12. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandoken, "Negative refractive index material-inspired 90-deg electrically tilted ultra wideband resonator," Optical Engineering, Vol. 53, No. 10, 107104, 2014.
doi:10.1117/1.OE.53.10.107104

13. Barati, H., M. H. Fakheri, and A. Abdolali, "Experimental demonstration of metamaterial-assisted antenna beam deflection through folded transformation optics," Journal of Optics, Vol. 20, No. 8, 085101, 2018.
doi:10.1088/2040-8986/aacdc1

14. Sehrai, D. A., M. Asif, W. A. Shah, J. Khan, I. Ullah, M. Ibrar, S. Jan, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Metasurface-based wideband MIMO antenna for 5G millimeter-wave systems," IEEE Access, 2021.

15. Mark, R., N. Rajak, K. Mandal, and S. Das, "Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application," AEU - International Journal of Electronics and Communications, Vol. 100, 144-152, 2019.
doi:10.1016/j.aeue.2019.01.011

16. Shabbir, T., R. Saleem, S. S. Al-Bawri, M. F. Shafique, and M. T. Islam, "Eight-port metamaterial loaded UWB-MIMO antenna system for 3D system-in-package applications," IEEE Access, Vol. 8, 106982-106992, 2020.
doi:10.1109/ACCESS.2020.3000134

17. Zhu, X., X. Yang, Q. Song, and B. Lui, "Compact UWB-MIMO antenna with metamaterial FSS decoupling structure," EURASIP Journal on Wireless Communications and Networking, Vol. 2017, No. 1, 1-6, 2017.
doi:10.1186/s13638-016-0795-x

18. Desai, A. and T. Upadhyaya, "Transparent dual band antenna with μ-negative material loading for smart devices," Microwave and Optical Technology Letters, Vol. 60, No. 11, 2805-2811, 2018.
doi:10.1002/mop.31474

19. Liu, D., J. Niu, H. Zhu, and J. Zhang, "Ultra-high-frequency microwave response from flexible transparent Au electromagnetic metamaterial nanopatterned antenna," Nanotechnology, Vol. 29, No. 6, 06LT01, 2018.
doi:10.1088/1361-6528/aaa25b

20. Upadhyaya, T. K., S. P. Kosta, R. Jyoti, and M. Palandöken, "Novel stacked μ-negative material-loaded antenna for satellite applications," International Journal of Microwave and Wireless Technologies, Vol. 8, No. 2, 229-235, 2016.
doi:10.1017/S175907871400138X

21. Borazjani, O., M. Naser-Moghadasi, J. Rashed-Mohassel, and R. Sadeghzadeh, "Design and fabrication of a new high gain multilayer negative refractive index metamaterial antenna for X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 9, e22284, 2020.
doi:10.1002/mmce.22284

22. Patel, U. and T. K. Upadhyaya, "Design and analysis of compact μ-negative material loaded wideband electrically compact antenna for WLAN/WiMAX applications," Progress In Electromagnetics Research M, Vol. 79, 11-22, 2019.
doi:10.2528/PIERM18121502

23. Xavier, G. V. R., A. J. R. Serres, E. G. da Costa, A. C. de Oliveira, L. A. M. M. Nobrega, and V. C. de Souza, "Design and application of a metamaterial superstrate on a bio-inspired antenna for partial discharge detection through dielectric windows," Sensors, Vol. 19, No. 19, 4255, 2019.
doi:10.3390/s19194255

24. Ojo, R., M. F. Jamlos, P. J. Soh, M. A. Jamlos, N. Bahari, Y. S. Lee, S. S. Al-Bawri, M. S. Abdul Karim, and K. A. Khairi, "A triangular MIMO array antenna with a double negative metamaterial superstrate to enhance bandwidth and gain," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 8, e22320, 2020.
doi:10.1002/mmce.22320

25. Cheng, C., W. Chen, Y. Lu, F. Ruan, and G. Li, "Large near-field enhancement in terahertz antennas by using hyperbolic Metamaterials with hole arrays," Applied Sciences, Vol. 9, No. 12, 2524, 2019.
doi:10.3390/app9122524

26. Tang, M. C., Y. Chen, T. Shi, and R. W. Ziolkowski, "Bandwidth-enhanced, compact, near-field resonant parasitic filtennas with sharp out-of-band suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 8, 1483-1487, 2018.
doi:10.1109/LAWP.2018.2850325

27. Wan, J., O. Rybin, and S. Shulga, "Far field focusing for a microwave patch antenna with composite substrate," Results in Physics, Vol. 8, 971-976, 2018.
doi:10.1016/j.rinp.2018.01.038

28. Baghel, A. K., S. S. Kulkarni, and S. K. Nayak, "Far-field wireless power transfer using GRIN lens metamaterial at GHz frequency," IEEE Microwave and Wireless Components Letters, Vol. 29, No. 6, 424-426, 2019.
doi:10.1109/LMWC.2019.2912056

29. Lum, K. M., C. Laohapensaeng, and C. Free, "A novel traveling-wave feed technique for circularly polarized planar antennas," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 3, 180-182, 2005.
doi:10.1109/LMWC.2005.844218

30. Dorsey, W. M. and A. I. Zaghloul, "Dual-band, dual-circularly polarised antenna element," IET Microwaves, Antennas & Propagation, Vol. 7, No. 4, 283-290, 2013.
doi:10.1049/iet-map.2012.0625

31. Liu, D. and B. Gaucher, "A new multiband antenna for WLAN/cellular applications," IEEE 60th Vehicular Technology Conference, 2004, VTC2004-Fall, Vol. 1, 243-246, IEEE, September 2004.

32. Long, J. and D. F. Sievenpiper, "A compact broadband dual-polarized patch antenna for satellite communication/navigation applications," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 273-276, 2014.