1. Geran, F., N. Mirzababaee, and S. Mohanna, "RF power harvester using a broadband monopole antenna and a quad-band rectifier," International Journal of Industrial Electronics, Control and Optimization, 2020. Google Scholar
2. Mouapi, A., N. Hakem, and N. Kandil, "Design of 900 MHz radio frequency energy harvesting circuit for the internet of things applications," 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), 1-6, IEEE, June 2020. Google Scholar
3. Md. Din, N., C. K. Chakrabarty, A. Bin Ismail, K. K. A. Devi, and W.-Y. Chen, "Design of RF energy harvesting system for energizing low power devices," Progress In Electromagnetics Research, Vol. 132, 49-69, 2012.
doi:10.2528/PIER12072002 Google Scholar
4. Moghaddam, N. A., A. Maleki, M. Shirichian, and N. S. Panah, "RF energy harvesting system and circuits for charging of wireless devices using spectrum sensing," 2017 24th IEEE International Conference on Electronics, Circuits and Systems (ICECS), 431-436, IEEE, December 2017.
doi:10.1109/ICECS.2017.8292044 Google Scholar
5. Arrawatia, M., M. S. Baghini, and G. Kumar, "RF energy harvesting system from cell towers in 900 MHz band," 2011 National Conference on Communications (NCC), 1-5, IEEE, January 2011. Google Scholar
6. Gunathilaka, W. M. D. R., H. G. C. P. Dinesh, G. G. C. M. Gunasekara, K. M. M. W. N. B. Narampanawe, and J. V. Wijayakulasooriya, "Ambient radio frequency energy harvesting," 2012 IEEE 7th International Conference on Industrial and Information Systems (ICIIS), 1-5, IEEE, August 2012. Google Scholar
7. Arrawatia, M., M. S. Baghini, and G. Kumar, "Differential microstrip antenna for RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 2, 1581-1588, 2015.
doi:10.1109/TAP.2015.2399939 Google Scholar
8. Colaiuda, D., I. Ulisse, and G. Ferri, "Rectifiers' design and optimization for a dual-channel RF energy harvester," Journal of Low Power Electronics and Applications, Vol. 10, No. 1, 11, 2020.
doi:10.3390/jlpea10020011 Google Scholar
9. Farinholt, K. M., G. Park, and C. R. Farrar, "RF energy transmission for a low-power wireless impedance sensor node," IEEE Sensors Journal, Vol. 9, No. 7, 793-800, 2009.
doi:10.1109/JSEN.2009.2022536 Google Scholar
10. Chang, Y., P. Zhang, and L. Wang, "Highly efficient differential rectenna for RF energy harvesting," Microwave and Optical Technology Letters, Vol. 61, No. 12, 2662-2668, 2019.
doi:10.1002/mop.31945 Google Scholar
11. Chiam, T. M., L. C. Ong, M. F. Karim, and Y. X. Guo, "5.8 GHz circularly polarized rectennas using schottky diode and LTC5535 rectifier for RF energy harvesting," 2009 Asia Pacific Microwave Conference, 32-35, IEEE, December 2009.
doi:10.1109/APMC.2009.5385503 Google Scholar
12. Pham, B. L. and A. V. Pham, "Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 1-3, IEEE, June 2013. Google Scholar
13. Elsheakh, D., M. Farouk, H. Elsadek, and H. Ghali, "Quad-band rectenna for RF energy harvesting system," Journal of Electromagnetic Analysis and Applications, Vol. 12, No. 3, 57-70, 2020. Google Scholar
14. Kumar, H., M. Arrawatia, and G. Kumar, "Broadband planar log-periodic dipole array antenna based RF-energy harvesting system," IETE Journal of Research, Vol. 65, No. 1, 39-43, 2019.
doi:10.1080/03772063.2017.1385427 Google Scholar
15. Ungan, T. and L. M. Reindl, "Harvesting low ambient RF-sources for autonomous measurement systems," 2008 IEEE Instrumentation and Measurement Technology Conference, 62-65, IEEE, May 2008.
doi:10.1109/IMTC.2008.4547005 Google Scholar
16. Le, T., K. Mayaram, and T. Fiez, "Efficient far-field radio frequency energy harvesting for passively powered sensor networks," IEEE Journal of Solid-State Circuits, Vol. 43, No. 3, 1287-1302, 2008.
doi:10.1109/JSSC.2008.920318 Google Scholar
17. Jabbar, H., Y. S. Song, and T. T. Jeong, "RF energy harvesting system and circuits for charging of mobile devices," IEEE Transactions on Consumer Electronics, Vol. 56, No. 1, 247-253, 2010.
doi:10.1109/TCE.2010.5439152 Google Scholar
18. Scorcioni, S., L. Larcher, and A. Bertacchini, "Optimized CMOS RF-DC converters for remote wireless powering of RFID applications," 2012 IEEE International Conference on RFID (RFID), 47-53, IEEE, April 2012. Google Scholar
19. Gao, H., M. K. Matters-Kamrnerer, P. Harpe, D. Milosevic, U. Johannsen, A. van Roermund, and P. Baltus, "A 71 GHz RF energy harvesting tag with 8% efficiency for wireless temperature sensors in 65 nm CMOS," 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 403-406, IEEE, June 2013.
doi:10.1109/RFIC.2013.6569616 Google Scholar
20. Cepeda Rubio, M. F. J., G. D. Guerrero López, F. Valdés Perezgasga, F. Flores García, A. Vera Hernández, and L. Leija Salas, "Computer modeling for microwave ablation in breast cancer using a coaxial slot antenna," International Journal of Thermophysics, Vol. 36, No. 10-11, 2687-2704, 2015.
doi:10.1007/s10765-015-1931-2 Google Scholar
21. Gas, P. and J. Czosnowski, "Calculation of the coaxial-slot antenna characteristics used for the interstitial microwave hyperthermia treatment," Przeglad Elektrotechniczny, Vol. 90, No. 3, 176-178, 2014. Google Scholar
22. Gas, P., "Optimization of multi-slot coaxial antennas for microwave thermotherapy based on the S11-parameter analysis," Biocybernetics and Biomedical Engineering, Vol. 37, No. 1, 78-93, 2017.
doi:10.1016/j.bbe.2016.10.001 Google Scholar
23. Bertram, J. M., D. Yang, M. C. Converse, J. G. Webster, and D. M. Mahvi, "Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model," Biomedical Engineering Online, Vol. 5, No. 1, 1-9, 2006.
doi:10.1186/1475-925X-5-15 Google Scholar
24. Bird, T. S., "Definition and misuse of return loss [report of the transactions editor-in-chief]," IEEE Antennas and Propagation Magazine, Vol. 51, No. 1, 166-167, 2009.
doi:10.1109/MAP.2009.5162049 Google Scholar
25. Khalid, F., W. Saeed, N. Shoaib, M. U. Khan, and H. M. Cheema, "Quad-band 3D rectenna array for ambient RF energy harvesting," International Journal of Antennas and Propagation, 2020, 2020. Google Scholar
26. Park, J. K., Y. H. Cho, J. M. Kim, S. H. Kim, J. S. Yoo, W. Y. Lee, I. Y. Lee, J. S. Kim, and D. H. Kim, "FM radio chip antenna using magneto-dielectric," 2007 Asia-Pacific Microwave Conference, 1-3, IEEE, December 2007. Google Scholar
27. Borja, C., J. Anguera, C. Puente, and J. Vergés, "How much can be reduced the internal FM antenna of mobiles phones?," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-5, IEEE, April 2010. Google Scholar
28. Bowick, C., C. Ajluni, and J. Blyler, RF Circuit Design, 2008.
29. Yan, H., J. M. Montero, A. Akhnoukh, L. C. De Vreede, and J. Burghartz, "An integration scheme for RF power harvesting," Proc. STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, Vol. 2005, 64-66, November 2005. Google Scholar
30. Devi, K. K. A., N. M. Din, and C. K. Chakrabarthy, "Optimization of the voltage doubler stages in an RF-DC convertor module for energy harvesting," Circuits and Systems, Vol. 3, No. 3, Jul. 2012. Google Scholar
31., Ti.com. 2021. [online] Available at: https://www.ti.com/lit/ds/symlink/tmp20.pdf?ts=161210780-8539&ref url=https%253A%252F%252Fwww.google.com%252F [Accessed 26 July 2020]. Google Scholar