Vol. 108
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-02-18
A Miniaturized Dual-Band Circularly Polarized Implantable Antenna by Half-Cutting
By
Progress In Electromagnetics Research M, Vol. 108, 139-149, 2022
Abstract
In this paper, a miniaturized dual-band circularly polarized (CP) implantable antenna is proposed. The -10 dB impedance bandwidth of the antenna in Industrial Scientific Medical (ISM) band and the low frequency part of UWB can reach 30.3% (2.02~2.74 GHz) and 39.9% (3.73~5.59 GHz), respectively. The important features are its CP characteristic in two bands and a small volume. The miniaturization of the antenna is realized by half-cutting technique, which is to cut the original antenna meeting the symmetry of structure and electric field distribution into two halves to obtain a compact structure and wider impedance bandwidth, so that the final size is 5×10.4×0.254 mm3. The CP wave performance of the antenna is achieved by exciting orthogonal polarization components on the radiation surface. The proposed antenna provides an axial ratio of less than 3 dB. CP axial ratio bandwidths in the two bands are 24.4% and 18.1%, respectively. In addition, the safety considerations and link margin are evaluated to analyze the performance of the proposed antenna. In order to verify the simulation results, the proposed antenna is fabricated. The measurements are carried out under the human muscle mimicking liquid circumstances. The measured data are in good agreement with the simulation results.
Citation
Bo Yin Ming Ye Junhao Cong Yingzhuo Xu , "A Miniaturized Dual-Band Circularly Polarized Implantable Antenna by Half-Cutting," Progress In Electromagnetics Research M, Vol. 108, 139-149, 2022.
doi:10.2528/PIERM21123003
http://www.jpier.org/PIERM/pier.php?paper=21123003
References

1. Saraswat, R. K. and M. Kumar, "A vertex-fed hexa-band frequency reconfigurable antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21893, 2019.

2. Saraswat, R. K. and M. Kumar, "Implementation of metamaterial loading to miniaturized UWB dipole antenna for WLAN and WiMAX applications with tunability characteristics," IETE Journal of Research, Vol. 2, 1-14, 2019.
doi:10.1080/03772063.2019.1684845

3. Saraswat, R. K. and M. Kumar, "A metamaterial hepta-band antenna for wireless applications with specific absorption rate reduction," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, e21824, 2019.

4. Saraswat, R. K. and M. Kumar, "Implementation of hybrid fractal metamaterial inspired frequency band reconfigurable multiband antenna for wireless applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, e22315, 2020.
doi:10.1002/mmce.22315

5. Greatbatch, W. and C. F. Holmes, "History of implantable devices," IEEE Eng. Med. Biol., Vol. 10, No. 3, 38-41, 1991.
doi:10.1109/51.84185

6. Islam, M. N. and M. R. Yuce, "Review of medical implant communication system (MICS) band and network," ICT Express, Vol. 2, No. 4, 188-194, 2016.
doi:10.1016/j.icte.2016.08.010

7. Zada, M., et al., "Ultra-compact implantable antenna with enhanced performance for leadless cardiac pacemaker system," IEEE Trans. Antennas Propag., Vol. 69, No. 2, 1152-1157, 2021.
doi:10.1109/TAP.2020.3008070

8. Asif, S. M., et al., "Design and in vivo test of a batteryless and fully wireless implantable asynchronous pacing system," IEEE Transactions on Biomedical Engineering, Vol. 63, No. 5, 1070-1081, 2016.
doi:10.1109/TBME.2015.2477403

9. Ahsan, N. K., C. Young-Ok, G. Henry, and H. Yang, "Recent advances in organ specific wireless bioelectronic devices: Perspective on biotelemetry and power transfer using antenna systems," Engineering, 2022.

10. Malik, N. A., P. Sant, T. Ajmal, and M. Ur-Rehman, "Implantable antennas for bio-medical applications," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 5, No. 1, 84-96, 2021.
doi:10.1109/JERM.2020.3026588

11. Singh, M. S., J. Ghosh, S. Ghosh, and A. Sarkhel, "Miniaturized dual-antenna system for implantable biotelemetry application," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 8, 1394-1398, 2021.
doi:10.1109/LAWP.2021.3081477

12. Ghosh, J. and D. Mitra, "Restoration of antenna performance in the vicinity of metallic cylinder in implantable scenario," IET Microwaves Antennas & Propagation, Vol. 14, No. 12, 1440-1445, 2020.
doi:10.1049/iet-map.2019.0519

13. Shah, I. A., M. Zada, and H. Yoo, "Design and analysis of a compact-sized multiband spiral-shaped implantable antenna for scalp implantable and leadless pacemaker systems," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4230-4234, 2019.
doi:10.1109/TAP.2019.2908252

14. Soontornpipit, P. and P. Satitvipawee, "Design and development of a dual-band PIFA antenna for wireless biotelemetry applications," 2018 International Electrical Engineering Congress, iEECON, 1-4, 2018.

15. Bao, Z., Y. X. Guo, and R. Mittra, "Single-layer dual-/tri-band inverted-f antennas for conformal capsule type of applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 7257-7265, 2017.
doi:10.1109/TAP.2017.2758161

16. Faisal, F., et al., "A miniaturized dual-band implantable antenna system for medical applications," IEEE Trans. Antennas Propag., Vol. 68, No. 2, 1161-1165, 2020.
doi:10.1109/TAP.2019.2938591

17. Liu, K., et al., "Design of conformal spiral dual-band antenna for wireless capsule system," IEEE Access, Vol. 9, 117349-117357, 2021.
doi:10.1109/ACCESS.2021.3106735

18. Li, R., Y. X. Guo, B. Zhang, and G. Du, "A miniaturized circularly polarized implantable annular-ring antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2566-2569, 2017.
doi:10.1109/LAWP.2017.2734246

19. Das, R. and H. Yoo, "A wideband circularly polarized conformal endoscopic antenna system for high-speed data transfer," IEEE Trans. Antennas Propag., Vol. 65, No. 6, 2816-2826, 2017.
doi:10.1109/TAP.2017.2694700

20. Hayat, S., S. A. A. Shah, and H. Yoo, "Miniaturized dual-band circularly polarized implantable antenna for capsule endoscopic system," IEEE Trans. Antennas Propag., Vol. 69, No. 4, 1885-1895, 2021.
doi:10.1109/TAP.2020.3026881

21. Samanta, G. and D. Mitra, "Dual-band circular polarized flexible implantable antenna using reactive impedance substrate," IEEE Trans. Antennas Propag., Vol. 67, No. 6, 4218-4223, 2019.
doi:10.1109/TAP.2019.2905978

22. Duan, Z. and L. J. Xu, Dual-band implantable antenna with circular polarisation property for ingestible capsule application, Vol. 53, No. 16, 1090-1092, Electronics Letters, 2017.

23. Xu, L. J., et al., "Circularly polarized annular ring antenna with wide axial-ratio bandwidth for biomedical applications," IEEE Access, Vol. 7, 59999-60009, 2019.
doi:10.1109/ACCESS.2019.2915236

24. Xu, L. J., et al., "Circularly polarized implantable antenna with improved impedance matching," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 876-880, 2020.
doi:10.1109/LAWP.2020.2983216

25. Mobashsher, A. T. and A. Abbosh, "Utilizing symmetry of planar ultra-wideband antennas for size reduction and enhanced performance," IEEE Antennas and Propagation Magazine, Vol. 57, No. 2, 153-166, 2015.
doi:10.1109/MAP.2015.2414488

26. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

27. Xia, W., K. Saito, M. Takahashi, and K. Ito, "Performances of an implanted cavity slot antenna embedded in the human arm," IEEE Trans. Antennas Propag., Vol. 57, No. 4, 894-899, 2009.
doi:10.1109/TAP.2009.2014579