1. Benny, R., T. A. Anjit, and P. Mythili, "An overview of microwave imaging for breast tumor detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402 Google Scholar
2. Anjit, T. A., R. Benny, P. Cherian, and P. Mythili, "Non-iterative microwave imaging solutions for inverse problems using deep learning," Progress In Electromagnetics Research M, Vol. 102, 53-63, 2021.
doi:10.2528/PIERM21021304 Google Scholar
3. Wang, F., et al. "Multi-resolution convolutional neural networks for inverse problems," Scientific Reports, Vol. 10, 1-11, 2020.
doi:10.1038/s41598-019-56847-4 Google Scholar
4. Khoshdel, V., A. Ashraf, and J. LoVetri, "Enhancement of multimodal microwave-ultrasound breast imaging using a deep-learning technique," Sensors, Vol. 4050, 1-14, 2019. Google Scholar
5. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 57, 1849-1860, 2019.
doi:10.1109/TGRS.2018.2869221 Google Scholar
6. Yao, H. M., W. E. I. Sha, and L. Jiang, "Two-step enhanced deep learning approach for electromagnetic inverse scattering problems," IEEE Antennas and Wireless Propagation Letters, Vol. 18, 2254-2258, 2019.
doi:10.1109/LAWP.2019.2925578 Google Scholar
7. Jin, K. H., M. T. McCann, E. Froustey, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Trans. Image Processing, Vol. 26, 4509-4522, 2017.
doi:10.1109/TIP.2017.2713099 Google Scholar
8. Zhang, L., K. Xu, R. Song, X. Z. Ye, G. Wang, and X. Chen, "Learning-based quantitative microwave imaging with a hybrid input scheme," IEEE Sensors Journal, Vol. 20, 15007-15013, 2020, doi: 10.1109/JSEN.2020.3012177.
doi:10.1109/JSEN.2020.3012177 Google Scholar
9. Kak, A. C. and M. Slaney, Principles of Computerized Tomographic Imaging, Society of Industrial and Applied Mathematics, July 2001.
10. Deng, L., "The MNIST database of handwritten digit images for machine learning research," IEEE Signal Processing Magazine, Vol. 29, 141-142, 2012, doi:10.1109/MSP.2012.2211477.
doi:10.1109/MSP.2012.2211477 Google Scholar
11. Geffrin, J.-M., P. Sabouroux, and C. Eyraoud, "Free space experimental scattering database continuation: Experimental set-up and measurement precision," Inverse Probl., Vol. 21, 117-130, 2005.
doi:10.1088/0266-5611/21/6/S09 Google Scholar
12. Li, L., et al. "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Trans. Antennas and Propag., Vol. 67, 1819-1825, 2019.
doi:10.1109/TAP.2018.2885437 Google Scholar