Vol. 121
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-06-30
Bandpass-Type NGD Design Engineering and Uncertainty Analysis of RLC-Series Resonator Based Passive Cell
By
Progress In Electromagnetics Research C, Vol. 121, 65-82, 2022
Abstract
This paper investigates the design method, characterization, and innovative uncertainty analysis of bandpass (BP) type negative group delay (NGD) passive cell. The lumped passive topology under study consists of a resistor and a passive RLC-series network. The voltage transfer function (VTF) based circuit theory introducing the BP NGD specification analytical expressions is established in function of the R, L and C lumped component parameters. The BP NGD performance is evaluated by figure of merit (FOM) formula. To demonstrate the BP NGD function, the design method was applied to a proof-of-concept (POC) operating at 125-kHz RFID standard center frequency. The BP NGD theory is validated by both AC simulation and measurement of POC and discrete component-based circuit prototype. Experimental BP NGD results in good agreement with calculation and simulation are obtained with NGD value of -36.77 μs, 8% NGD bandwidth, and an attenuation lower than -9.6 dB. Innovative expressions of BP NGD parameter uncertainties are established versus the POC circuit parameters. The BP NGD specification variations are interpreted with respect to the influence of constituting component uncertainties via comparison between the established NGD uncertainty theory and co-simulated sensitivity analyses.
Citation
Yves Constant Mombo Boussougou, Eric Jean Roy Sambatra, Antonio Jaomiary, Lucius Ramifidisoa, Nour Mohammad Murad, Jean-Paterne Kouadio, Samuel Ngoho, Frank Elliot Sahoa, Sahbi Baccar, and Rivo Randriatsiferana, "Bandpass-Type NGD Design Engineering and Uncertainty Analysis of RLC-Series Resonator Based Passive Cell," Progress In Electromagnetics Research C, Vol. 121, 65-82, 2022.
doi:10.2528/PIERC22011705
References

1. Kang, S.-M. and H. Y. Chen, "A global delay model for domino CMOS circuits with application to transistor sizing," International Journal of Circuit Theory and Applications, Vol. 18, No. 3, 289-306, 1990.
doi:10.1002/cta.4490180306        Google Scholar

2. Hwang, M.-E., S.-O. Jung, and K. Roy, "Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 56, No. 7, 1428-1441, 2008.
doi:10.1109/TCSI.2008.2006217        Google Scholar

3. Groenewold, G., "Noise and group delay in active filters," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 54, No. 7, 1471-1480, 2007.
doi:10.1109/TCSI.2007.900181        Google Scholar

4. Myoung, S.-S., B.-S. Kwon, Y.-H. Kim, and J.-G. Yook, "Effect of group delay in RF BPF on impulse radio systems," IEICE Transactions on Communications, Vol. 90, No. 12, 3514-3522, 2007.
doi:10.1093/ietcom/e90-b.12.3514        Google Scholar

5. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," The European Physical Journal Applied Physics, Vol. 57, No. 3, 31002, 2012.
doi:10.1051/epjap/2012110374        Google Scholar

6. Alves, L. N. and R. L. Aguiar, "A time-delay technique to improve GBW on negative feedback amplifiers," International Journal of Circuit Theory and Applications, Vol. 36, No. 4, 375-386, 2008.
doi:10.1002/cta.441        Google Scholar

7. Ahn, K.-P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 9, 2139-2147, 2009.
doi:10.1109/TMTT.2009.2027082        Google Scholar

8. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modeling of baseband and modulated signal delay compensations with low-and band-pass NGD effects," AEU --- Int. J. Electronics Communications, Vol. 70, No. 9, 1122-1127, 2016.
doi:10.1016/j.aeue.2016.05.009        Google Scholar

9. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU --- Int. J. Electronics Communications, Vol. 123, 153297-153309, 2020.
doi:10.1016/j.aeue.2020.153297        Google Scholar

10. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward ampli ers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1109/MMM.2020.3035862        Google Scholar

11. Jeong, Y., H. Choi, and C. D. Kim, "Experimental verification for time advancement of negative group delay in RF electronic circuits," Electronics Letters, Vol. 46, No. 4, 306307, 2010.
doi:10.1049/el.2010.3147        Google Scholar

12. Almahroug, A. A., B. M. Amer, Z. H. M. Fheleboom, S. Rehan, and A. I. A. Omer, "Designing a re ection-type NGD network using open and short shunt stubs for wideband electrically small antennas," Journal of Applied Science, Vol. 1, No. 6, 61-75, Apr. 2021.        Google Scholar

13. Zhang, T., R. Xu, and C.-T. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 921-923, 2017.
doi:10.1109/LMWC.2017.2745487        Google Scholar

14. Ravelo, B., M. Le Roy, and A. Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3077-3080, Dec. 2008.
doi:10.1002/mop.23883        Google Scholar

15. Ravelo, B., A. Perennec, and M. Le Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," Int. J. RFMiCAE, Vol. 21, No. 1, 17-24, Jan. 2011.        Google Scholar

16. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493-1508, 2022.
doi:10.1109/ACCESS.2021.3138371        Google Scholar

17. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," Int. J. Electronics Communications, Vol. 68, No. 4, 282-290, Apr. 2014.
doi:10.1016/j.aeue.2013.09.003        Google Scholar

18. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201        Google Scholar

19. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493-1508, 2022.
doi:10.1109/ACCESS.2021.3138371        Google Scholar

20. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808        Google Scholar

21. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 5, 1116-1125, 2010.
doi:10.1109/TMTT.2010.2045576        Google Scholar

22. Ravelo, B., F. Wan, J. Nebhen, W. Rahajandraibe, and S. Lallechere, "Resonance effect reduction with bandpass negative group delay fully passive function," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 7, 2364-2368, Jul. 2021.
doi:10.1109/TCSII.2021.3059813        Google Scholar

23. Ravelo, B., S. Lallechere, W. Rahajandraibe, and F. Wan, "Electromagnetic cavity resonance equalization with bandpass negative group delay," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1248-1257, Aug. 2021.
doi:10.1109/TEMC.2021.3051100        Google Scholar

24. Segard, B. and B. Macke, "Observation of negative velocity pulse propagation," Physics Letters A, Vol. 109, No. 5, 213-216, 1985.
doi:10.1016/0375-9601(85)90305-6        Google Scholar

25. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," The European Physical Journal D | Atomic, Molecular, Optical and Plasma Physics, Vol. 23, No. 1, 125-141, 2003.
doi:10.1134/S1064226921030049        Google Scholar

26. Bukhman, N. S., "On the principle of causality and superluminal signal propagation velocities," Journal of Communications Technology and Electronics, Vol. 66, 227-241, 2021.
doi:10.1109/LMWC.2003.808719        Google Scholar

27. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 2, 51-53, 2003.
doi:10.1109/TAP.2003.817556        Google Scholar

28. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2619-2625, 2003.
doi:10.2528/PIER09052801        Google Scholar

29. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.1049/el.2010.1797        Google Scholar

30. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electronics Letters, Vol. 46, No. 17, 1206-1208, 2010.
doi:10.1049/el.2017.0328        Google Scholar

31. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electronics Letters, Vol. 53, No. 7, 476-478, Feb. 2017.
doi:10.1109/TMTT.2014.2345352        Google Scholar

32. Chaudhary, G. and Y. Jeong, "Low signal-attenuation negative group-delay network topologies using coupled lines," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 10, 2316-2324, 2014.
doi:10.1109/TMTT.2013.2295555        Google Scholar

33. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 2, 234-243, 2014.
doi:10.1109/LMWC.2010.2089675        Google Scholar

34. Choi, H., Y. Jeong, J. Lim, S.-Y. Eom, and Y.-B. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microwave Wireless Components Letters, Vol. 21, No. 1, 19-21, 2010.
doi:10.1587/transele.E92.C.1176        Google Scholar

35. Ahn, K.-P., R. Ishikawa, A. Saitou, and K. Honjo, "Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations," IEICE Trans. Electronics, Vol. 92, No. 9, 1176-1181, 2009.        Google Scholar

36. Ravelo, B., "Negative group-delay phenomenon analysis with distributed parallel interconnect line," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 573-580, Apr. 2016.        Google Scholar

37. Ravelo, B., "Theory on coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3604-3611, Nov. 2016.        Google Scholar

38. Ravelo, B., "Innovative theory on multiband negative group delay topology based on feedback loop power combiner," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 8, 738-742, Aug. 2016.        Google Scholar

39. Mitchell, M. W. and R. Y. Chiao, "Causality and negative group delays in a simple bandpass amplifier," American Journal of Physics, Vol. 66, No. 1, 14-19, 1998.        Google Scholar

40. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and "fronts" in a causal system: An experiment with very low frequency bandpass amplifiers," Physics Letters A, Vol. 230, No. 3-4, 133-138, 1997.        Google Scholar

41. Nakanishi, T., K. Sugiyama, and M. Kitano, "Demonstration of negative group delays in a simple electronic circuit," American Journal of Physics, Vol. 70, No. 11, 1117-1121, 2002.        Google Scholar

42. Kitano, M., T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach," IEEE J. Selected Topics in Quantum Electronics, Vol. 9, No. 1, 43-51, 2003.        Google Scholar

43. Munday, J. N. and R. H. Henderson, "Superluminal time advance of a complex audio signal," Applied Physics Letters, Vol. 85, No. 3, 503-505, 2004.        Google Scholar

44. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," International Journal of Circuit Theory and Applications, Vol. 42, No. 10, 1016-1032, 2014.        Google Scholar

45. Ravelo, B., "On the low-pass, high-pass, bandpass and stop-band NGD RF passive circuits," URSI Radio Science Bulletin, Vol. 2017, No. 363, 10-27, Dec. 2017.        Google Scholar

46. Yuan, A., S. Fang, Z. Wang, H. Liu, and H. Zhang, "A novel band-stop filter with band-pass, high- pass, and low-pass negative group delay characteristics," Hindawi Int. J. Antennas and Propagation, Vol. 2021, Article ID 3207652, 1-15, 2021.        Google Scholar

47. Yuan, A., S. Fang, Z. Wang, and H. Liu, "A novel multifunctional negative group delay circuit for realizing band-pass, high-pass and low-pass," Electronics, Vol. 10, No. 1742, 1-12, 2021.        Google Scholar

48. Ravelo, B., "First-order low-pass negative group delay passive topology," Electronics Letters, Vol. 52, No. 2, 124-126, Jan. 2016.        Google Scholar

49. Randriatsiferana, R., Y. Gan, F.Wan, W. Rahajandraibe, R. Vauche, N. M. Murad, and B. Ravelo, "Study and experimentation of a 6-dB attenuation low-pass NGD circuit," Analog. Integr. Circ. Sig. Process., 1-14, Apr. 2021.        Google Scholar

50. Wan, F., N. Li, B. Ravelo, Q. Ji, B. Li, and J. Ge, "The design method of the active negative group delay circuits based on a microwave amplifier and an RL-series network," IEEE Access, Vol. 6, 33849-33858, 2018.        Google Scholar

51. Ngoho, S., Y. C. Mombo Boussougou, S. S. Yazdani, Y. Dong, N. M. Murad, S. Lallechere, W. Rahajandraibe, and B. Ravelo, "Design and modelling of ladder-shape topology generating bandpass NGD function," Progress In Electromagnetics Research C, Vol. 115, 145-160, 2021.        Google Scholar

52. Wan, F., X. Huang, K. Gorshkov, B. Tishchuk, X. Hu, G. Chan, F. E. Sahoa, S. Baccar, M. Guerin, W. Rahajandraibe, and B. Ravelo, "High-pass NGD characterization of resistive-inductive network based low-frequency circuit," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 40, No. 5, 1032-1049, 2021.        Google Scholar

53. Yang, R., X. Zhou, S. Yazdani, E. Sambatra, F. Wan, S. Lallechere, and B. Ravelo, "Analysis, design and experimentation of high-pass negative group delay lumped circuit," Circuit World, 1-25, Aug. 2021.        Google Scholar

54. Fenni, S., F. Haddad, K. Gorshkov, B. Tishchuk, A. Jaomiary, F. Marty, G. Chan, M. Guerin, W. Rahajandraibe, and B. Ravelo, "AC low-frequency characterization of stop-band negative group delay circuit," Progress In Electromagnetics Research C, Vol. 115, 261-276, 2021.        Google Scholar

55. Guerin, M., Y. Liu, A. Douyere, G. Chan, F.Wan, S. Lallechere, W. Rahajandraibe, and B. Ravelo, "Design and synthesis of inductorless passive cell operating as stop-band negative group delay function," IEEE Access, Vol. 9, No. 1, 100141-100153, Jul. 2021.        Google Scholar