Université des Sciences et Techniques de Masuku (USTM)
Gabon
HomepageEcole Normale Supérieure pour l'Enseignement Technique (ENSET)
Madagascar
HomepageInstitut Universitaire de Technologie
University of La Reunion
France
Homepage1. Kang, S.-M. and H. Y. Chen, "A global delay model for domino CMOS circuits with application to transistor sizing," International Journal of Circuit Theory and Applications, Vol. 18, No. 3, 289-306, 1990.
doi:10.1002/cta.4490180306 Google Scholar
2. Hwang, M.-E., S.-O. Jung, and K. Roy, "Slope interconnect effort: Gate-interconnect interdependent delay modeling for early CMOS circuit simulation," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 56, No. 7, 1428-1441, 2008.
doi:10.1109/TCSI.2008.2006217 Google Scholar
3. Groenewold, G., "Noise and group delay in active filters," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 54, No. 7, 1471-1480, 2007.
doi:10.1109/TCSI.2007.900181 Google Scholar
4. Myoung, S.-S., B.-S. Kwon, Y.-H. Kim, and J.-G. Yook, "Effect of group delay in RF BPF on impulse radio systems," IEICE Transactions on Communications, Vol. 90, No. 12, 3514-3522, 2007.
doi:10.1093/ietcom/e90-b.12.3514 Google Scholar
5. Ravelo, B., "Delay modeling of high-speed distributed interconnect for the signal integrity prediction," The European Physical Journal Applied Physics, Vol. 57, No. 3, 31002, 2012.
doi:10.1051/epjap/2012110374 Google Scholar
6. Alves, L. N. and R. L. Aguiar, "A time-delay technique to improve GBW on negative feedback amplifiers," International Journal of Circuit Theory and Applications, Vol. 36, No. 4, 375-386, 2008.
doi:10.1002/cta.441 Google Scholar
7. Ahn, K.-P., R. Ishikawa, and K. Honjo, "Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits," IEEE Trans. Microw. Theory Techn., Vol. 57, No. 9, 2139-2147, 2009.
doi:10.1109/TMTT.2009.2027082 Google Scholar
8. Ravelo, B., S. Lallechere, A. Thakur, A. Saini, and P. Thakur, "Theory and circuit modeling of baseband and modulated signal delay compensations with low-and band-pass NGD effects," AEU --- Int. J. Electronics Communications, Vol. 70, No. 9, 1122-1127, 2016.
doi:10.1016/j.aeue.2016.05.009 Google Scholar
9. Shao, T., Z. Wang, S. Fang, H. Liu, and Z. N. Chen, "A group-delay-compensation admittance inverter for full-passband self-equalization of linear-phase band-pass filter," AEU --- Int. J. Electronics Communications, Vol. 123, 153297-153309, 2020.
doi:10.1016/j.aeue.2020.153297 Google Scholar
10. Xiao, J.-K., Q.-F. Wang, and J.-G. Ma, "Negative group delay circuits and applications: Feedforward ampliers, phased-array antennas, constant phase shifters, non-foster elements, interconnection equalization, and power dividers," IEEE Microwave Magazine, Vol. 22, No. 2, 16-32, Feb. 2021.
doi:10.1109/MMM.2020.3035862 Google Scholar
11. Jeong, Y., H. Choi, and C. D. Kim, "Experimental verification for time advancement of negative group delay in RF electronic circuits," Electronics Letters, Vol. 46, No. 4, 306307, 2010.
doi:10.1049/el.2010.3147 Google Scholar
12. Almahroug, A. A., B. M. Amer, Z. H. M. Fheleboom, S. Rehan, and A. I. A. Omer, "Designing a re ection-type NGD network using open and short shunt stubs for wideband electrically small antennas," Journal of Applied Science, Vol. 1, No. 6, 61-75, Apr. 2021. Google Scholar
13. Zhang, T., R. Xu, and C.-T. M. Wu, "Unconditionally stable non-foster element using active transversal-filter-based negative group delay circuit," IEEE Microwave and Wireless Components Letters, Vol. 27, No. 10, 921-923, 2017.
doi:10.1109/LMWC.2017.2745487 Google Scholar
14. Ravelo, B., M. Le Roy, and A. Perennec, "Application of negative group delay active circuits to the design of broadband and constant phase shifters," Microwave and Optical Technology Letters, Vol. 50, No. 12, 3077-3080, Dec. 2008.
doi:10.1002/mop.23883 Google Scholar
15. Ravelo, B., A. Perennec, and M. Le Roy, "Synthesis of frequency-independent phase shifters using negative group delay active circuit," Int. J. RFMiCAE, Vol. 21, No. 1, 17-24, Jan. 2011. Google Scholar
16. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493-1508, 2022.
doi:10.1109/ACCESS.2021.3138371 Google Scholar
17. Ravelo, B., "Distributed NGD active circuit for RF-microwave communication," Int. J. Electronics Communications, Vol. 68, No. 4, 282-290, Apr. 2014.
doi:10.1016/j.aeue.2013.09.003 Google Scholar
18. Nebhen, J. and B. Ravelo, "Innovative microwave design of frequency-independent passive phase shifter with LCL-network and bandpass NGD circuit," Progress In Electromagnetics Research C, Vol. 109, 187-203, 2021.
doi:10.2528/PIERC21010201 Google Scholar
19. Ravelo, B., G. Fontgalland, H. S. Silva, J. Nebhen, W. Rahajandraibe, M. Guerin, G. Chan, and F. Wan, "Original application of stop-band negative group delay microwave passive circuit for two-step stair phase shifter designing," IEEE Access, Vol. 10, No. 1, 1493-1508, 2022.
doi:10.1109/ACCESS.2021.3138371 Google Scholar
20. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit," Progress In Electromagnetics Research, Vol. 105, 253-272, 2010.
doi:10.2528/PIER10041808 Google Scholar
21. Choi, H., Y. Jeong, C. D. Kim, and J. S. Kenney, "Efficiency enhancement of feedforward amplifiers by employing a negative group-delay circuit," IEEE Trans. Microw. Theory Techn., Vol. 58, No. 5, 1116-1125, 2010.
doi:10.1109/TMTT.2010.2045576 Google Scholar
22. Ravelo, B., F. Wan, J. Nebhen, W. Rahajandraibe, and S. Lallechere, "Resonance effect reduction with bandpass negative group delay fully passive function," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 7, 2364-2368, Jul. 2021.
doi:10.1109/TCSII.2021.3059813 Google Scholar
23. Ravelo, B., S. Lallechere, W. Rahajandraibe, and F. Wan, "Electromagnetic cavity resonance equalization with bandpass negative group delay," IEEE Transactions on Electromagnetic Compatibility, Vol. 63, No. 4, 1248-1257, Aug. 2021.
doi:10.1109/TEMC.2021.3051100 Google Scholar
24. Segard, B. and B. Macke, "Observation of negative velocity pulse propagation," Physics Letters A, Vol. 109, No. 5, 213-216, 1985.
doi:10.1016/0375-9601(85)90305-6 Google Scholar
25. Macke, B. and B. Segard, "Propagation of light-pulses at a negative group-velocity," The European Physical Journal D | Atomic, Molecular, Optical and Plasma Physics, Vol. 23, No. 1, 125-141, 2003.
doi:10.1134/S1064226921030049 Google Scholar
26. Bukhman, N. S., "On the principle of causality and superluminal signal propagation velocities," Journal of Communications Technology and Electronics, Vol. 66, 227-241, 2021.
doi:10.1109/LMWC.2003.808719 Google Scholar
27. Eleftheriades, G. V., O. Siddiqui, and A. K. Iyer, "Transmission line models for negative refractive index media and associated implementations without excess resonators," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 2, 51-53, 2003.
doi:10.1109/TAP.2003.817556 Google Scholar
28. Siddiqui, O. F., M. Mojahedi, and G. V. Eleftheriades, "Periodically loaded transmission line with effective negative refractive index and negative group velocity," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2619-2625, 2003.
doi:10.2528/PIER09052801 Google Scholar
29. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.
doi:10.1049/el.2010.1797 Google Scholar
30. Markley, L. and G. V. Eleftheriades, "Quad-band negative-refractive-index transmission-line unit cell with reduced group delay," Electronics Letters, Vol. 46, No. 17, 1206-1208, 2010.
doi:10.1049/el.2017.0328 Google Scholar
31. Liu, G. and J. Xu, "Compact transmission-type negative group delay circuit with low attenuation," Electronics Letters, Vol. 53, No. 7, 476-478, Feb. 2017.
doi:10.1109/TMTT.2014.2345352 Google Scholar
32. Chaudhary, G. and Y. Jeong, "Low signal-attenuation negative group-delay network topologies using coupled lines," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 10, 2316-2324, 2014.
doi:10.1109/TMTT.2013.2295555 Google Scholar
33. Chaudhary, G., Y. Jeong, and J. Lim, "Microstrip line negative group delay filters for microwave circuits," IEEE Trans. Microw. Theory Techn., Vol. 62, No. 2, 234-243, 2014.
doi:10.1109/LMWC.2010.2089675 Google Scholar
34. Choi, H., Y. Jeong, J. Lim, S.-Y. Eom, and Y.-B. Jung, "A novel design for a dual-band negative group delay circuit," IEEE Microwave Wireless Components Letters, Vol. 21, No. 1, 19-21, 2010.
doi:10.1587/transele.E92.C.1176 Google Scholar
35. Ahn, K.-P., R. Ishikawa, A. Saitou, and K. Honjo, "Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations," IEICE Trans. Electronics, Vol. 92, No. 9, 1176-1181, 2009. Google Scholar
36. Ravelo, B., "Negative group-delay phenomenon analysis with distributed parallel interconnect line," IEEE Transactions on Electromagnetic Compatibility, Vol. 58, No. 2, 573-580, Apr. 2016. Google Scholar
37. Ravelo, B., "Theory on coupled line coupler-based negative group delay microwave circuit," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 11, 3604-3611, Nov. 2016. Google Scholar
38. Ravelo, B., "Innovative theory on multiband negative group delay topology based on feedback loop power combiner," IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 63, No. 8, 738-742, Aug. 2016. Google Scholar
39. Mitchell, M. W. and R. Y. Chiao, "Causality and negative group delays in a simple bandpass amplifier," American Journal of Physics, Vol. 66, No. 1, 14-19, 1998. Google Scholar
40. Mitchell, M. W. and R. Y. Chiao, "Negative group delay and "fronts" in a causal system: An experiment with very low frequency bandpass amplifiers," Physics Letters A, Vol. 230, No. 3-4, 133-138, 1997. Google Scholar
41. Nakanishi, T., K. Sugiyama, and M. Kitano, "Demonstration of negative group delays in a simple electronic circuit," American Journal of Physics, Vol. 70, No. 11, 1117-1121, 2002. Google Scholar
42. Kitano, M., T. Nakanishi, and K. Sugiyama, "Negative group delay and superluminal propagation: An electronic circuit approach," IEEE J. Selected Topics in Quantum Electronics, Vol. 9, No. 1, 43-51, 2003. Google Scholar
43. Munday, J. N. and R. H. Henderson, "Superluminal time advance of a complex audio signal," Applied Physics Letters, Vol. 85, No. 3, 503-505, 2004. Google Scholar
44. Ravelo, B., "Similitude between the NGD function and filter gain behaviours," International Journal of Circuit Theory and Applications, Vol. 42, No. 10, 1016-1032, 2014. Google Scholar
45. Ravelo, B., "On the low-pass, high-pass, bandpass and stop-band NGD RF passive circuits," URSI Radio Science Bulletin, Vol. 2017, No. 363, 10-27, Dec. 2017. Google Scholar
46. Yuan, A., S. Fang, Z. Wang, H. Liu, and H. Zhang, "A novel band-stop filter with band-pass, high- pass, and low-pass negative group delay characteristics," Hindawi Int. J. Antennas and Propagation, Vol. 2021, Article ID 3207652, 1-15, 2021. Google Scholar
47. Yuan, A., S. Fang, Z. Wang, and H. Liu, "A novel multifunctional negative group delay circuit for realizing band-pass, high-pass and low-pass," Electronics, Vol. 10, No. 1742, 1-12, 2021. Google Scholar
48. Ravelo, B., "First-order low-pass negative group delay passive topology," Electronics Letters, Vol. 52, No. 2, 124-126, Jan. 2016. Google Scholar
49. Randriatsiferana, R., Y. Gan, F.Wan, W. Rahajandraibe, R. Vauche, N. M. Murad, and B. Ravelo, "Study and experimentation of a 6-dB attenuation low-pass NGD circuit," Analog. Integr. Circ. Sig. Process., 1-14, Apr. 2021. Google Scholar
50. Wan, F., N. Li, B. Ravelo, Q. Ji, B. Li, and J. Ge, "The design method of the active negative group delay circuits based on a microwave amplifier and an RL-series network," IEEE Access, Vol. 6, 33849-33858, 2018. Google Scholar
51. Ngoho, S., Y. C. Mombo Boussougou, S. S. Yazdani, Y. Dong, N. M. Murad, S. Lallechere, W. Rahajandraibe, and B. Ravelo, "Design and modelling of ladder-shape topology generating bandpass NGD function," Progress In Electromagnetics Research C, Vol. 115, 145-160, 2021. Google Scholar
52. Wan, F., X. Huang, K. Gorshkov, B. Tishchuk, X. Hu, G. Chan, F. E. Sahoa, S. Baccar, M. Guerin, W. Rahajandraibe, and B. Ravelo, "High-pass NGD characterization of resistive-inductive network based low-frequency circuit," COMPEL --- The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 40, No. 5, 1032-1049, 2021. Google Scholar
53. Yang, R., X. Zhou, S. Yazdani, E. Sambatra, F. Wan, S. Lallechere, and B. Ravelo, "Analysis, design and experimentation of high-pass negative group delay lumped circuit," Circuit World, 1-25, Aug. 2021. Google Scholar
54. Fenni, S., F. Haddad, K. Gorshkov, B. Tishchuk, A. Jaomiary, F. Marty, G. Chan, M. Guerin, W. Rahajandraibe, and B. Ravelo, "AC low-frequency characterization of stop-band negative group delay circuit," Progress In Electromagnetics Research C, Vol. 115, 261-276, 2021. Google Scholar
55. Guerin, M., Y. Liu, A. Douyere, G. Chan, F.Wan, S. Lallechere, W. Rahajandraibe, and B. Ravelo, "Design and synthesis of inductorless passive cell operating as stop-band negative group delay function," IEEE Access, Vol. 9, No. 1, 100141-100153, Jul. 2021. Google Scholar