Vol. 122
Latest Volume
All Volumes
PIERC 165 [2026] PIERC 164 [2026] PIERC 163 [2026] PIERC 162 [2025] PIERC 161 [2025] PIERC 160 [2025] PIERC 159 [2025] PIERC 158 [2025] PIERC 157 [2025] PIERC 156 [2025] PIERC 155 [2025] PIERC 154 [2025] PIERC 153 [2025] PIERC 152 [2025] PIERC 151 [2025] PIERC 150 [2024] PIERC 149 [2024] PIERC 148 [2024] PIERC 147 [2024] PIERC 146 [2024] PIERC 145 [2024] PIERC 144 [2024] PIERC 143 [2024] PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2022-08-09
An Metamaterial Inspired Antenna with CSRR and Rectangular SRR Based Flexible Antenna with Jeans Gap Filled for Wireless Body Area Network
By
Progress In Electromagnetics Research C, Vol. 122, 165-181, 2022
Abstract
In this paper, a flexible compact Jeans gap filled metamaterial inspired antenna is proposed to operate at 2.4 GHz in the Industrial Scientific and Medical (ISM) band. This designed antenna is flexible having size of about 27×23 mm2 with substrate of thickness 0.3 mm. The proposed antenna comprises two complementary split ring resonators at ground plane and one circular ring and complementary rectangular split ring resonator. The top patch consists of two rectangular split ring resonators etched inside the rectangular patch. The use of SRR and CSRR on top and bottom of patch has helped to reduce the size of antenna along with maintaining performance of antenna. Further enhancements are done to make it jeans gap filled antenna with jeans filled between main patch and superstrate. The superstrate top patch consists of a square EBG structure. The simulation results have shown an increase in return loss due to the use of square EBG structure on superstrate. The simulated directivity obtained on antenna is 2.0775 dB. The measured and simulated results are in a good agreement. The motivation of this work is to design a compact metamaterial based antenna for wireless body area network with gap coupled jeans material to nullify effects of human body. Effects of air gap coupled and jeans gap coupled are analyzed in terms of performance. While the final antenna (Antenna-4) is designed, several iterations are tried to optimize and maintain good performance. Step 1 (Antenna-1) consists of two complementary split ring resonators along with a circular ring placed in ground plane with thickness of polyamide substrate as 0.3 mm. Step 2 (Antenna-2) consists of two split ring resonators along with a circular ring placed in ground plane. An air gap coupled superstrate is designed having gap between main patch and superstrate as 1 mm. Step 3 (Antenna-3) has the same configuration as Antenna-2, and the only difference is the air gap between main patch and superstrate which is replaced by jeans material. Step 4 (Antenna-4) is the final designed antenna with miniaturized size of 27×23 mm2 as compared with previous antenna configurations. This research work has identified the challenges involved for designing an antenna in a wireless body area network. Practical aspect of design needs to consider: a) Bending effect on performance as movement and physiological changes might affect the performance. b) Performance degrades when antenna comes in contact with human body. Bending Effect: This work has also analyzed effect of bending on return loss. For final designed antenna (Antenna-4) maximum bending up to bend 30˚ is possible. Further bending would break the substrate. After maximum bending, the measured return loss is about -16.7071 dB at 2.28 GHz. Body area network: The designed final antenna (Antenna-4) is tested on different parts of human body such as human-arm and leg. No major difference is seen on return loss when it is tested on different parts of body. The designed final antenna (Antenna-4) is tested on direct contact with human-arm as well as with different cloths (cotton jeans, cotton, curtain cloth, floor cloth, polyester and Turkish cloth) having different permittivities with the distance between cloth and antenna as 0 cm and 1 cm. Wearable antennas should be carefully constructed to avoid causing harm to the human body when being worn. The Low Specific Absorption Rate is one of the criteria that should be considered while developing a wearable antenna. The maximum allowable SAR limit is 1.6 W/kg. The specific absorption rate for Antenna-4 is 0.2 W/kg when input power is 1 watt and is 0.036 W/kg when input power is 100 milli watt. The results obtained show that the proposed antenna is both safe and acceptable for use in compliance with the World Health Organization's ICNIRP requirements.
Citation
Siddhant Goswami, and Deepak C. Karia, "An Metamaterial Inspired Antenna with CSRR and Rectangular SRR Based Flexible Antenna with Jeans Gap Filled for Wireless Body Area Network," Progress In Electromagnetics Research C, Vol. 122, 165-181, 2022.
doi:10.2528/PIERC22020203
References

1. Iqbal, A., A. Smida, A. J. Alazemi, M. I. Waly, N. Khaddaj Mallat, and S. Kim, "Wideband circularly polarized MIMO antenna for high datawearable biotelemetric devices," IEEE Access, Vol. 8, 17935-17944, 2020, doi: 10.1109/ACCESS.2020.2967397, http://dx.doi.org/10.1109/ACCESS.2020.2967397.
doi:10.1109/ACCESS.2020.2967397        Google Scholar

2. Smida, A., A. Iqbal, A. J. Alazemi, M. I. Waly, R. Ghayoula, and S. Kim, "Wideband wearable antenna for biomedical telemetry applications," IEEE Access, Vol. 8, 15687-15694, 2020, doi: 10.1109/ACCESS.2020.2967413, http://dx.doi.org/10.1109/ACCESS.2020.296741.
doi:10.1109/ACCESS.2020.2967413        Google Scholar

3. Chaturvedi, D. and S. Raghavan, "A compact metamaterial-inspired antenna for WBAN application," Wirel. Pers. Commun., Vol. 105, No. 4, 1449-1460, 2019, doi: 10.1007/s11277-019-06153-z, http://dx.doi.org/10.1007/s11277-019-06153-z.
doi:10.1007/s11277-019-06153-z        Google Scholar

4. Goswami, S. and D. C. Karia, "A metamaterial-inspired circularly polarized antenna for implantable applications," Engineering Reports, Vol. 2, No. 10, e12251, doi: 10.1002/eng2.12251, http://dx.doi.org/10.1002/eng2.12251.        Google Scholar

5. Soh, P. J., G. A. Vandenbosch, S. L. Ooi, and N. H. M. Rais, "Design of a broadband all-textile slotted PIFA," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 379-384, 2011.
doi:10.1109/TAP.2011.2167950        Google Scholar

6. Hazarika, B. and B. Basu, "Multi-layered low-profile monopole antenna using metamaterial for wireless body area networks," 2019 International Conference on Automation, Computational and Technology Management (ICACTM), 431-435, 2019.
doi:10.1109/ICACTM.2019.8776720        Google Scholar

7. Hu, B., G. P. Gao, L. L. He, X. D. Cong, and J. N. Zhao, "Bending and on-arm effects on a wearable antenna for 2.45 GHz body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 378-381, 2015.        Google Scholar

8. Bouazizi, A., G. Zaibi, A. Iqbal, A. Basir, M. Samet, and A. A. Kachouri, "Dual-band caseprinted planar inverted-F antenna design with independent resonance control for wearable short range telemetric systems," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 8, e21781, 2019.
doi:10.1002/mmce.21781        Google Scholar

9. Iqbal, A., A. J. Alazemi, and N. Khaddaj Mallat, "Slot-DRA-based independent dual-band hybrid antenna for wearable biomedical devices," IEEE Access, Vol. 7, 184029-184037, 2019, doi: 10.1109/ACCESS.2019.2960443, http://dx.doi.org/10.1109/ACCESS.2019.2960443.
doi:10.1109/ACCESS.2019.2960443        Google Scholar

10. Elfergani, I., A. Iqbal, C. Zebiri, et al. "Low-profile and closely spaced four-element MIMO antenna for wireless body area networks," Electronics, Vol. 9, No. 2, 258, 2020, doi: 10.3390/electronics9020258, http://dx.doi.org/10.3390/electronics9020258.
doi:10.3390/electronics9020258        Google Scholar

11. Aziz Ul Haq, M. and S. Koziel, "On topology modifications for wideband antenna miniaturization," AEU --- International Journal of Electronics and Communications, Vol. 94, 215-220, 2018, doi: https://doi.org/10.1016/j.aeue.2018.07.006, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2018.07.006.
doi:10.1016/j.aeue.2018.07.006        Google Scholar

12. Ali, T. and R. C. Biradar, "A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11N and IEEE 802.16E," Microwave and Optical Technology Letters, Vol. 59, No. 5, 1000-1006, 2017, doi: 10.1002/mop.30454, http://dx.doi.org/10.1002/mop.30454.
doi:10.1002/mop.30454        Google Scholar

13. Ajetrao, K. and A. Dhande, "Study of metamaterials and analysis of split ring resonators to design multiband and UWB antennas," GRENZE International Journal of Engineering and Technology, 2, 2016, doi: 10.21647/gijet/2016/v2/i2/48895, http://dx.doi.org/10.21647/gijet/2016/v2/i2/48895.        Google Scholar

14. Ali, T., A. Mohammad Saadh, R. Biradar, J. Anguera, and A. Andújar, "A miniaturized metamaterial slot antenna for wireless applications," AEU --- International Journal of Electronics and Communications, Vol. 82, 368-382, 2017, doi: https://doi.org/10.1016/j.aeue.2017.10.005, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2017.10.005.
doi:10.1016/j.aeue.2017.10.005        Google Scholar

15. Zhu, C., T. Li, K. Li, et al. "Electrically small metamaterial-inspired tri-band antenna with meta-mode," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1738-1741, 2015.
doi:10.1109/LAWP.2015.2421356        Google Scholar

16. Raval, F., Y. Kosta, and H. Joshi, "Reduced size patch antenna using complementary split ring resonator as defected ground plane," AEU --- International Journal of Electronics and Communications, Vol. 69, No. 8, 1126-1133, 2015, doi: https://doi.org/10.1016/j.aeue.2015.04.013, http://dx.doi.org/https://doi.org/10.1016/j.aeue.2015.04.013.
doi:10.1016/j.aeue.2015.04.013        Google Scholar

17. Lee, J. G. and J. H. Lee, "SAR reduction using integration of PIFA and AMC structure for pentaband mobile terminals," International Journal of Antennas and Propagation, Vol. 2017, Article ID 6196721, 2017.        Google Scholar

18. Kim, S., K. Kwon, and J. Choi, "A compact circularly-polarized antenna with enhanced bandwidth for Wban applications," Microwave and Optical Technology Letters, Vol. 55, No. 8, 1738-1741, 2013.
doi:10.1002/mop.27620        Google Scholar

19. Sultan, K. S., H. H. Abdullah, and E. A. F. Abdallah, "Low-SAR miniaturized handset antenna using EBG," Microstrip Antennas: Trends in Research on, Vol. 1, 127, 2017.        Google Scholar

20. Chen, Y. S. and T. Y. Ku, "A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1144-1147, 2015.        Google Scholar

21. Igarashi, A. and Y. Okano, "Basic research of reduction technique for the microwave exposure with conductive cloth," 2010 Asia-Pacific Microwave Conference, 1364-1367, 2010.        Google Scholar

22. Sultan, K. S., H. H. Abdullah, E. A. Abdallah, and E. A. Hashish, "Low-SAR, miniaturized printed antenna for mobile, ISM, and WLAN services," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1106-110, 2013.
doi:10.1109/LAWP.2013.2280955        Google Scholar

23. Gómez-Villanueva, R., H. Jardón-Aguilar, and R. L. Y. Miranda, "State of the art methods for low SAR antenna implementation," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, 2010.        Google Scholar

24. Wang, M., Z. Yang, J. Wu, et al. "Investigation of SAR reduction using flexible antenna with metamaterial structure in wireless body area network," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 6, 3076-3086, 2018.
doi:10.1109/TAP.2018.2820733        Google Scholar

25. Lakshmanan, R. and S. K. Sukumaran, "Flexible ultra wide band antenna for WBAN applications," Procedia Technology, Vol. 24, 880-887, Part of Special Issue: International Conference on Emerging Trends in Engineering, Science and Technology (ICETEST --- 2015), 2016, doi: https://doi.org/10.1016/j.protcy.2016.05.149, http://dx.doi.org/https://doi.org/10.1016/j.protcy.2016.05.149.        Google Scholar

26. Al-Sehemi, A. G., A. A. Al-Ghamdi, N. T. Dishovsky, N. T. Atanasov, and G. L. Atanasova, "Flexible and small wearable antenna for wireless body area network applications," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 11-12, 1063-1082, 2017.
doi:10.1080/09205071.2017.1336492        Google Scholar

27. Agarwal, K., Y. X. Guo, and B. Salam, "Wearable AMC backed near-endfire antenna for onbody communications on latex substrate," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 6, No. 3, 346-358, 2016.
doi:10.1109/TCPMT.2016.2521487        Google Scholar

28. Mantash, M., A. C. Tarot, S. Collardey, and K. Mahdjoubi, "Investigation of flexible textile antennas and AMC reflectors," International Journal of Antennas and Propagation, Vol. 2012, Article ID 236505, 2012.        Google Scholar

29. Lago, H., P. J. Soh, M. F. Jamlos, N. Shohaimi, S. Yan, and G. A. Vandenbosch, "Textile antenna integrated with compact AMC and parasitic elements for WLAN/WBAN applications," Applied Physics A, Vol. 122, No. 12, 1-6, 2016.
doi:10.1007/s00339-016-0575-9        Google Scholar

30. Zhang, K., P J. Soh, and S. Yan, "Meta-wearable antennas --- A review of metamaterial based antennas in wireless body area networks," Materials, Vol. 14, No. 1, 149, 2021.
doi:10.3390/ma14010149        Google Scholar

31. Alhawari, A. R, A. Almawgani, A. T. Hindi, H. Alghamdi, and T. Saeidi, "Metamaterial-based wearable flexible elliptical UWB antenna for WBAN and breast imaging application," AIP Advances, Vol. 11, No. 1, 015128, 2021.
doi:10.1063/5.0037232        Google Scholar

32. Iqbal, A., A. Basir, A. Smida, et al. "Electromagnetic bandgap backed millimeter-wave MIMO antenna for wearable applications," IEEE Access, Vol. 7, 111135-111144, 2019, doi: 10.1109/ACCESS.2019.2933913, http://dx.doi.org/10.1109/ACCESS.2019.2933913.
doi:10.1109/ACCESS.2019.2933913        Google Scholar

33. Keshwani, V. R., P. P. Bhavarthe, and S. S. Rathod, "Eight shape electromagnetic band gap structure for bandwidth improvement of wearable antenna," Progress In Electromagnetics Research C, Vol. 116, 37-49, 2021.
doi:10.2528/PIERC21070603        Google Scholar

34. Verma, A., R. K. Arya, R. Bhattacharya, and S. N. Raghava, "Compact PIFA antenna with high gain and low SAR using AMC for WLAN/C-band/5G applications," IETE Journal of Research, Vol. 1, No. 11, 2021.        Google Scholar