1. Blumich, B., J. Perlo, and F. Casanova, "Mobile single-sided NMR," Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 52, 197-269, 2008.
doi:10.1016/j.pnmrs.2007.10.002 Google Scholar
2. Goga, N. O., A. Pirnau, L. Szabo, et al. "Mobile NMR: Applications to materials and biomedicine," Journal of Optoelectronics and Advanced Materials, Vol. 8, No. 4, 1430, 2006. Google Scholar
3. Blümich, B., F. Casanova, J. Perlo, et al. "Advances of unilateral mobile NMR in nondestructive materials testing," Magnetic Resonance Imaging, Vol. 23, No. 2, 197-201, 2005.
doi:10.1016/j.mri.2004.11.058 Google Scholar
4. Blümich, B., "Applications in biology and medicine," Single-Sided NMR, 187-202, Springer, Berlin, Heidelberg, 2011. Google Scholar
5. Xia, Y., Z. Xu, J. Huang, J. Lin, and D. Yu, "Unilateral mini NMR sensor used for assessing the aging status of the sheds of composite insulators," Progress In Electromagnetics Research M, Vol. 42, 145-152, 2015.
doi:10.2528/PIERM15040902 Google Scholar
6. Xu, Z., L. Li, P. Guo, et al. "Portable unilateral NMR measuring system for assessing the aging status of silicon rubber insulators," Applied Magnetic Resonance, Vol. 50, No. 1, 277-291, 2019.
doi:10.1007/s00723-018-1061-7 Google Scholar
7. Abragam, A., Principles of Nuclear Magnetism, Oxford University Press, 1983.
8. Hansen, P. C., "Analysis of discrete ill-posed problems by means of the L-curve," SIAM Review, Vol. 34, No. 4, 561-580, 1992.
doi:10.1137/1034115 Google Scholar
9. Ross, M. M. B., G. R. Wilbur, P. F. de J. Cano Barrita, and B. J. Balcom, "A portable, submersible, MR sensor - The Proteus magnet," Journal of Magnetic Resonance, Vol. 326, 1-8, 2021. Google Scholar
10. Guoxing, X. and L. Liben, Principles of Nuclear Magnetic Resonance Imaging (in Chinese), Science Press, 2007.
11. Wang, F., L. Miao, S. Wang, et al. "Application of improved wavelet denoising method in GPS attitude determination," Journal of Astronautics, Vol. 29, No. 4, 1267-1271, 2008. Google Scholar
12. Gao, Z., L. Hua, H. Zheng, et al. "Physicochemical characteristics of fly ashes and situation & prospect of its utilization as resources," Journal of Capital Normal University, Vol. 24, No. 1, 50-54, 2003. Google Scholar
13. Mohan, J., V. Krishnaveni, and Y. Guo, "A survey on the magnetic resonance image denoising methods," Biomedical Signal Processing and Control, Vol. 9, 56-69, 2014.
doi:10.1016/j.bspc.2013.10.007 Google Scholar
14. Gerig, G. and O. Kubler, "Nonlinear anisotropic filtering of MRI data," IEEE Transactions on Medical Imaging, Vol. 11, No. 2, 221-232, 1992.
doi:10.1109/42.141646 Google Scholar
15. Krissian, K. and S. Aja-Fernandez, "Noise-driven anisotropic diffusion ltering of MRI," IEEE Transactions on Image Processing, Vol. 18, No. 10, 2265, A Publication of the IEEE Signal Processing Society, 2009.
doi:10.1109/TIP.2009.2025553 Google Scholar
16. Pizurica, A., W. Philips, I. Lemahieu, and M. Acheroy, "A versatile wavelet domain noise filtration technique for medical imaging," IEEE Transactions on Medical Imaging, Vol. 22, 323-331, 2003.
doi:10.1109/TMI.2003.809588 Google Scholar
17. Muresan, D. D. and T. W. Parks, "Adaptive principal components and image denoising," IEEE International Conference on Image Process, Vol. 1, 101-104, 2003. Google Scholar
18. Yaroslavsky, L. P., K. Egiazarian, and J. Astola, "Transform domain image restoration methods: Review, comparison and interpretation," Nonlinear Image Processing and Pattern Analysis XII, Vol. 4304, 155-169, 2000. Google Scholar
19. Awate, S. P. and R. T. Whitaker, "Nonparametric neighborhood statistics for MRI denoising," International Conference on Information Processing in Medical Imaging, Springer-Verlag, 2005. Google Scholar
20. Manjón, J. V., P. Coupé, A. Buades, D. Louis Collins, and M. Robles, "New methods for MRI denoising based on sparseness and self-similarity," Medical Image Analysis, Vol. 16, No. 1, 18-27, 2012.
doi:10.1016/j.media.2011.04.003 Google Scholar
21. Zhang, K., W. Zuo, Y. Chen, et al. "Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising," IEEE Transactions on Image Processing, Vol. 26, No. 7, 3142-3155, 2016.
doi:10.1109/TIP.2017.2662206 Google Scholar
22. Jiang, D., W. Dou, L. Vosters, et al. "Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network," Japanese Journal of Radiology, Vol. 36, 566-574, 2018.
doi:10.1007/s11604-018-0758-8 Google Scholar
23. Gang, C., "Research on the application of MRI image denoising methods (in Chinese)," The Medical Forum, 2019. Google Scholar
24. Torrence, C. and G. P. Compo, "A practical guide to wavelet analysis," Bulletin of the American Meteorological Society, Vol. 79, No. 1, 61-78, 1998.
doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Google Scholar
25. Coifman, R. R., Y. Meyer, and V. Wickerhauser, "Wavelet analysis and signal processing," Wavelets and Their Applications, 1992. Google Scholar
26. Walnut, D. F., An Introduction to Wavelet Analysis, Springer Science & Business Media, 2002.
27. Mingcai, L., Wavelet Analysis and Its Applications, 1, Tsinghua University Press, 2005.
28. Pan, G., "Research on key technology and applications of portable and fully open magnetic resonance instrument,", Chongqing University, 2015. Google Scholar
29. Tang, L. W. and D. F. Tang, "Wavelet signal denoising technique based on matlab," Journal of Hunan University of Science & Technology, Vol. 29, No. 1, 85-87, 2014. Google Scholar
30. O'Reilly, T. and A. G. Webb, "In vivo T1 and T2 relaxation time maps of brain tissue, skeletal muscle, and lipid measured in healthy volunteers at 50 mT," Magnetic Resonance in Medicine, Vol. 87, No. 2, 884-895, 2022.
doi:10.1002/mrm.29009 Google Scholar