1. Doumanis, E., G. Goussetis, J. L. Gomez-Tornero, R. Cahill, and V. Fusco, "Anisotropic impedance surfaces for linear to circular polarization conversion," IEEE Trans. Antennas Propag., Vol. 60, No. 1, 212-219, 2012.
doi:10.1109/TAP.2011.2167920 Google Scholar
2. Zhao, J., J. Song, Y. Zhou, R. Zhao, and J. Zhou, "Dual-polarization, tunable breaking window in the polarization conversion pass band in a terahertz dirac semimetal-based metamaterial," IEEE Photon. J., Vol. 11, No. 6, 1-9, 2019. Google Scholar
3. Fernandez, O., A. Gomez, J. Basterrechea, and A. Vegas, "Reciprocal circular polarization handedness conversion using chiral metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2307-2310, 2017.
doi:10.1109/LAWP.2017.2715830 Google Scholar
4. Jiang, X., Z. Zhang, Y. Li, and Z. Feng, "A planar wideband dual-polarized array for active antenna system," IEEE Antennas Wireless Propag. Lett., Vol. 13, 544-547, 2014.
doi:10.1109/LAWP.2014.2311583 Google Scholar
5. Van Den Broek, G. and J. Van Der Vooren, "On the reflection properties of periodically supported metallic wire gratings with rectangular mesh showing small sag," IEEE Trans. Antennas Propag., Vol. 19, 109-113, 1971.
doi:10.1109/TAP.1971.1139874 Google Scholar
6. Liu, W., Y. Li, Z. Zhang, and Z. Feng, "A bidirectional array of the same left-handed circular polarization using a special substrate," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1543-1546, 2013.
doi:10.1109/LAWP.2013.2292587 Google Scholar
7. Zhou, H., W. Hong, L. Tian, and M. Jiang, "A polarization-rotating SIW reflective surface with two sharp band edges," IEEE Antennas Wireless Propag. Lett., Vol. 15, 130-134, 2016.
doi:10.1109/LAWP.2015.2433174 Google Scholar
8. Arnieri, E., F. Greco, L. Boccia, and G. Amendola, "A SIW-based polarization rotator with an application to linear-to-circular dual-band polarizers at K-/Ka-band," IEEE Trans. Antennas Propag., Vol. 68, No. 5, 3730-3738, 2020.
doi:10.1109/TAP.2020.2963901 Google Scholar
9. Muhammad, S. A., R. Sauleau, L. Le Coq, and H. Legay, "Self-generation of circular polarization using compact Fabry-Perot cavity antennas," IEEE Antennas Wireless Propag. Lett., Vol. 10, 907-910, 2011.
doi:10.1109/LAWP.2011.2166989 Google Scholar
10. Xie, P., G. Wang, H. Li, J. Liang, and X. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
doi:10.1109/TAP.2019.2950811 Google Scholar
11. Pitilakis, A., O. Tsilipakos, F. Liu, K. M. Kossifos, A. C. Tasolamprou, D.-H. Kwon, M. S. Mirmoosa, D. Manessis, N. V. Kantartzis, C. Liaskos, M. A. Antoniades, J. Georgiou, C. M. Soukoulis, M. Kafesaki, and S. A. Tretyakov, "A multi-functional reconfigurable metasurface: Electromagnetic design accounting for fabrication aspects," IEEE Trans. Antennas Propag., Vol. 69, No. 3, 1440-1454, 2021.
doi:10.1109/TAP.2020.3016479 Google Scholar
12. Shen, C., R. Xu, J. Sun, Z. Wang, and S. Wei, "Metasurface-based holographic display with all-dielectric meta-axilens," IEEE Photon. J., Vol. 13, No. 5, 1-5, 2021.
doi:10.1109/JPHOT.2021.3107442 Google Scholar
13. Kato, Y., S. Morita, H. Shiomi, and A. Sanada, "Ultrathin perfect absorbers for normal incident waves using dirac cone metasurfaces with critical external coupling," IEEE Microw. Wireless Compon. Lett., Vol. 30, No. 4, 383-386, 2020.
doi:10.1109/LMWC.2020.2979708 Google Scholar
14. Zhou, G.-N., B.-H. Sun, Q.-Y. Liang, Y.-H. Yang, and J.-H. Lan, "Beam-deflection short backfire antenna using phase-modulated metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 1, 546-551, 2020.
doi:10.1109/TAP.2019.2934832 Google Scholar
15. Murugesan, A., D. Natarajan, and K. T. Selvan, "Low-cost, wideband checkerboard metasurfaces for monostatic RCS reduction," IEEE Antennas Wireless Propag. Lett., Vol. 20, No. 4, 493-497, 2021.
doi:10.1109/LAWP.2021.3054863 Google Scholar
16. Dalgac, S., M. Bakir, F. Karadag, M. Karaaslan, O. Akgol, E. Unal, and C. Sabah, "Microfluidic sensor applications by using chiral metamaterial," Modern Physics Letters B, Vol. 34, No. 5, 2020.
doi:10.1142/S0217984920500311 Google Scholar
17. Dalgac, S., M. Bakir, F. Karadag, E. Unal, M. Karaaslan, and C. Sabah, "Characterization of chiral metamaterial sensor with high sensitivity," Optik, Vol. 202, 2020. Google Scholar
18. Dalgac, S., F. Karadag, M. Bakir, O. Akgol, E. Unal, and M. Karaaslan, "Chiral metamaterial-based sensor applications to determine quality of car lubrication oil," Transactions of the Institute of Measurement and Control, Vol. 43, No. 7, 1640-1649, 2021.
doi:10.1177/0142331220976104 Google Scholar
19. Xu, P., W. X. Jiang, S. Y. Wang, and T. J. Cui, "An ultrathin cross-polarization converter with near unity efficiency for transmitted waves," IEEE Trans. Antennas Propag., Vol. 66, No. 8, 4370-4373, 2018.
doi:10.1109/TAP.2018.2839972 Google Scholar
20. Gao, X., X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double V-shaped metasurface," IEEE Trans. Antennas Propag., Vol. 63, No. 8, 3522-3530, 2015.
doi:10.1109/TAP.2015.2434392 Google Scholar
21. Murtaza, M., A. Rashid, and F. A. Tahir, "A highly efficient low-cost reflective anisotropic metasurface for linear to linearly cross- and circular-polarization conversion," Microw. Opt. Technol. Lett., Vol. 63, No. 5, 1346-1353, 2020.
doi:10.1002/mop.32748 Google Scholar
22. Han, B., S. Li, X. Cao, J. Han, L. Jidi, and Y. Li, "Dual-band transmissive metasurface with linear to dual-circular polarization conversion simultaneously," AIP Advances, Vol. 10, No. 12, 2020.
doi:10.1063/5.0034762 Google Scholar
23. Meng, C., P. C. V. Thrane, F. Ding, J. Gjessing, M. Thomaschewski, C. Wu, C. Dirdal, and S. I. Bozhevolnyi, "Dynamic piezoelectric MEMS-based optical metasurfaces," Science Advances, Vol. 7, No. 26, 2021.
doi:10.1126/sciadv.abg5639 Google Scholar
24. Cheng, Y. Z., W. Y. Li, and X. S. Mao, "Triple-band polarization angle independent 90 degrees polarization rotator based on Fermat's spiral structure planar chiral metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603 Google Scholar
25. Song, K., Z. Su, S. Silva, C. Fowler, C. Ding, R. Ji, Y. Liu, X. Zhao, and J. Zhou, "Broadband and high-efficiency transmissive-type nondispersive polarization conversion meta-device," Opt. Mater. Express, Vol. 8, No. 8, 2018.
doi:10.1364/OME.8.002430 Google Scholar
26. Wang, S.-Y., W. Liu, and W. Geyi, "A circular polarization converter based on in-linked loop antenna frequency selective surface," Appl. Phys. B, Vol. 124, No. 6, 2018. Google Scholar
27. Cui, Z. T., Z. Y. Xiao, M. M. Chen, F. Lv, and Q. D. Xu, "A transmissive linear polarization and circular polarization cross polarization converter based on all-dielectric metasurface," J. Electron. Mater., Vol. 50, No. 7, 4207-4214, 2021.
doi:10.1007/s11664-021-08944-2 Google Scholar
28. Fei, P., G. A. E. Vandenbosch, W. H. Guo, X. Wen, D. Xiong, W. Hu, Q. Zheng, and X. Chen, "Versatile cross-polarization conversion chiral metasurface for linear and circular polarizations," Adv. Opt. Mater., Vol. 8, No. 13, 2020.
doi:10.1002/adom.202000194 Google Scholar
29. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classication of periodic metamaterials," Phys. Rev. A, Vol. 82, No. 5, 2010.
doi:10.1103/PhysRevA.82.053811 Google Scholar
30. Naseri, P., F. Khosravi, and P. Mousavi, "Antenna-filter-antenna-based transmit-array for circular polarization application," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1389-1392, 2017.
doi:10.1109/LAWP.2016.2638469 Google Scholar
31. Wang, S. Y., W. Liu, and W. Geyi, "Dual-band transmission polarization converter based on planar-dipole pair frequency selective surface," Sci. Rep., Vol. 8, No. 1, 3791, 2018.
doi:10.1038/s41598-018-22092-4 Google Scholar
32. Xie, P., G. M. Wang, H. P. Li, J. G. Liang, and X. J. Gao, "Circularly polarized Fabry-Perot antenna employing a receiver-transmitter polarization conversion metasurface," IEEE Trans. Antennas Propag., Vol. 68, No. 4, 3213-3218, 2020.
doi:10.1109/TAP.2019.2950811 Google Scholar
33. Akram, M. R., M. Q. Mehmood, X. D. Bai, R. H. Jin, M. Premaratne, and W. R. Zhu, "High efficiency ultrathin transmissive metasurfaces," Adv. Opt. Mater., Vol. 7, No. 11, 2019.
doi:10.1002/adom.201801628 Google Scholar
34. Yu, Y. Z., F. J. Xiao, I. D. Rukhlenko, and W. R. Zhu, "High-efficiency ultra-thin polarization converter based on planar anisotropic transmissive metasurface," AEU - Int J. Electron. C, Vol. 118, 2020. Google Scholar