1. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Compact all-textile dual-band antenna loaded with metamaterial-inspired structure," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1486-1489, 2015.
doi:10.1109/LAWP.2014.2370254 Google Scholar
2. Moro, R., S. Agneessens, H. Rogier, A. Dierck, and M. Bozzi, "Textile microwave components in substrate integrated waveguide technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 422-432, Feb. 2015.
doi:10.1109/TMTT.2014.2387272 Google Scholar
3. Joshi, R., et al. "Dual-band, dual-sense textile antenna with AMC backing for localization using GPS and WBAN/WLAN," IEEE Access, Vol. 8, 89468-89478, 2020.
doi:10.1109/ACCESS.2020.2993371 Google Scholar
4. Tak, J. and J. Choi, "An all-textile Louis Vuitton logo antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1211-1214, 2015.
doi:10.1109/LAWP.2015.2398854 Google Scholar
5. Locher, I., M. Klemm, T. Kirstein, and G. Troster, "Design and characterization of purely textile patch antennas," IEEE Trans. Adv. Packag., Vol. 29, No. 4, 777-788, Nov. 2006.
doi:10.1109/TADVP.2006.884780 Google Scholar
6. May, W. E., I. Sfar, J.-M. Ribero, and L. Osman, "A millimeter-wave textile antenna loaded with EBG structures for 5G and IoT applications," 2019 IEEE 19th Mediterranean Microwave Symposium (MMS), 1-4, 2019. Google Scholar
7. Ouyang, Y. and W. J. Chappell, "High frequency properties of electro-textiles for wearable antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 381-389, Feb. 2008.
doi:10.1109/TAP.2007.915435 Google Scholar
8. Lopes, C., C. Loss, R. Salvado, P. Pinho, S. Agneeessens, and H. Rogier, "Development of substrate integrated waveguides with textile materials by manual manufacturing techniques," Proceedings of the 2nd Int. Electron. Conf. Sens. Appl., S3004, 2014. Google Scholar
9. Stoppa, M. and A. Chiolerio, "Wearable electronics and smart textiles: A critical review," Sensors, Vol. 14, 11957-11992, 2014.
doi:10.3390/s140711957 Google Scholar
10. Mashaghba, H. A., et al. "Bending assessment of dual-band split ring-shaped and bar slotted all-textile antenna for off-body WBAN/WLAN and 5G applications," 2020 2nd International Conference on Broadband Communications, Wireless Sensors and Powering (BCWSP), 2020. Google Scholar
11. Gao, G., C. Yang, B. Hu, R. Zhang, and S. Wang, "A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 2, 288-292, Feb. 2019.
doi:10.1109/LAWP.2018.2889117 Google Scholar
12. Antenna, P., M. N. Ammal, B. Ramachandran, P. H. Rao, and D. N. Kumar, "5 GHz WLAN band-notched UWB symmetrical slotted PI-notched parasitic planar," 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI), 338-342, 2013.
doi:10.1109/ICACCI.2013.6637194 Google Scholar
13. Sharma, D., S. K. Dubey, and V. N. Ojha, "Wearable antenna for millimeter wave 5G communications," 2018 IEEE Indian Conference on Antennas and Propogation (InCAP), 2018. Google Scholar
14. Zhong, J., A. Kiourti, T. Sebastian, Y. Bayram, and J. L. Volakis, "Conformal load-bearing spiral antenna on conductive textile threads," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 230-233, 2017.
doi:10.1109/LAWP.2016.2570807 Google Scholar
15. Celenk, E. and N. T. Tokan, "All-textile on-body antenna for military applications," IEEE Antennas and Wireless Propagation Letters, 2022. Google Scholar
16. Ahmed, A., M. R. Robel, and W. S. T. Rowe, "Dual-band two-sided beam generation utilizing an EBG-based periodically modulated metasurface," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 3307-3312, Apr. 2020.
doi:10.1109/TAP.2019.2943442 Google Scholar
17. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
18. Smith, W. J., D. C. Padilla, S. C. Vier, C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
19. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247 Google Scholar
20. Wahidi, M. S., M. I. Khan, F. A. Tahir, and H. Rmili, "Multifunctional single layer metasurface based on hexagonal split ring resonator," IEEE Access, Vol. 8, 28054-28063, 2020. Google Scholar
21. Syihabuddin, B., M. R. Effendi, and A. Munir, "Characterization of X-band wave absorber made of SRR-based metasurface," 2019 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-4, 2019. Google Scholar
22. Aznabet, M., et al. "Wave propagation properties in stacked SRR/CSRR metasurfaces at microwave frequencies," 2009 Mediterrannean Microwave Symposium (MMS), 1-4, 2009. Google Scholar
23. Nguyen, T. K., S. K. Patel, S. Lavadiya, J. Parmar, and C. D. Bui, "Design and fabrication of multiband reconfigurable copper and liquid multiple complementary split-ring resonator based patch antenna," Waves in Random and Complex Media, 1-24, 2022.
doi:10.1080/17455030.2021.2024623 Google Scholar
24. Lavadiya, S. P., S. K. Patel, and R. Maria, "High gain and frequency reconfigurable copper and liquid metamaterial tooth based microstrip patch antenna," AEU - International Journal of Electronics and Communications, Vol. 137, 153799, 2021.
doi:10.1016/j.aeue.2021.153799 Google Scholar
25. Lajevardi, M. E. and M. Kamyab, "Ultraminiaturized metamaterial-inspired SIW textile antenna for off-body applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3155-3158, 2017.
doi:10.1109/LAWP.2017.2766201 Google Scholar
26. Gil, I., R. Seager, and R. Fernández-García, "Embroidered metamaterial antenna for optimized performance on wearable applications," Phys. Status Solidi (a), Vol. 215, No. 21, Art. No. 1800377, 2018. Google Scholar
27. Hong, Y., J. Tak, and J. Choi, "An all textile SIW cavity-backed circular ring slot antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1995-1999, 2016.
doi:10.1109/LAWP.2016.2549578 Google Scholar
28. Gao, G., C. Yang, B. Hu, R. Zhang, and S. Wang, "A wide-bandwidth wearable all-textile PIFA with dual resonance modes for 5 GHz WLAN applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 6, 4206-4211, Jun. 2019.
doi:10.1109/TAP.2019.2905976 Google Scholar
29. Madeira "HC conductive Treads Switch on the Magic,", 6, 2021. Google Scholar
30. Dogan, E., E. Unal, and D. Kapusuz, "New generation WIMAX antenna based on metamaterial superstrate," Optoelectronics and Advanced Materials - Rapid Communications, 1002-1010, 2013. Google Scholar
31. Dogan, E., E. Unal, D. Kapusuz, M. Karaaslan, and C. Sabah, "Microstrip patch antenna covered with left handed metamaterial," ACES Journal, Vol. 28, No. 10, 999-1004, 2013. Google Scholar
32. Çelenk, E. and N. T. Tokan, "All-textile, washable metasurface antenna for WBAN/WLAN and mid-band 5G applications," 2021 13th International Conference on Electrical and Electronics Engineering (ELECO), 305-309, 2021.
doi:10.23919/ELECO54474.2021.9677728 Google Scholar
33. Hu, B., G. Gao, L. He, X. Cong, and J. Zhao, "Bending and on-arm effects on a wearable antenna for 2.45 GHz body area network," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 378-381, 2016.
doi:10.1109/LAWP.2015.2446512 Google Scholar
34. Gabriel, C., "A compilation of the dielectric properties of body tissues at RF and microwave frequencies," Radio Freq. Radiat. Division, Brooks Air Force Base, San Antonio, TX, USA, Tech. Rep. AL/OE-TR-1996-0037, 1996. Google Scholar
35. Commission Implementing Decision (EU) 2016/537 Official J. Eur., Apr. 5, 2016.