1. Liu, Y., X. Zhang, and S. Niu, "A permanent magnet linear motor with complementary flux and its optimization," IEEE Transactions on Magnetics, Vol. 55, No. 6, 1-5, June 2019. Google Scholar
2. Kwon, Y. and W. Kim, "Electromagnetic analysis and steady-state performance of double-sided flat linear motor using soft magnetic composite," IEEE Transactions on Industrial Electronics, Vol. 64, No. 3, 2178-2187, March 2017.
doi:10.1109/TIE.2016.2619658 Google Scholar
3. Lu, M. and R. Cao, "A novel double-sided high temperature superconducting linear modular flux-switching motor," IEEE Transactions on Applied Superconductivity, Vol. 31, No. 5, 1-10, August 2021. Google Scholar
4. Cao, R., M. Cheng, C. C. Mi, and W. Hua, "Influence of leading design parameters on the force performance of a complementary and modular linear flux-switching permanent-magnet motor," IEEE Transactions on Industrial Electronics, Vol. 61, No. 5, 2165-2175, May 2014.
doi:10.1109/TIE.2013.2271603 Google Scholar
5. Zhao, W., M. Cheng, J. Ji, R. Cao, Y. Du, and F. Li, "Design and analysis of a new fault-tolerant linear permanent-magnet motor for maglev transportation applications," IEEE Transactions on Applied Superconductivity, Vol. 22, No. 3, 5200204-5200204, June 2012.
doi:10.1109/TASC.2012.2185209 Google Scholar
6. Wu, J., X. Zhu, Z. Xiang, L. Xu, M. Jiang, and W. Pu, "Electromagnetic performance prediction of a double-rotor flux-switching motor based on general air-gap equivalent algorithms model," 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 1-6, Harbin, China, 2019. Google Scholar
7. Wang, X., J. Wu, R. Luo, and J. Li, "Design optimization of thrust density for permanent magnet linear motor based on genetic algorithm," 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), 1192-1198, Chongqing, China, 2018. Google Scholar
8. Sun, X., Z. Shi, and J. Zhu, "Multiobjective design optimization of an IPMSM for EVs based on fuzzy method and sequential taguchi method," IEEE Transactions on Industrial Electronics, Vol. 68, No. 11, 10592-10600, November 2021.
doi:10.1109/TIE.2020.3031534 Google Scholar
9. Sun, X., Z. Shi, G. Lei, Y. Guo, and J. Zhu, "Multi-objective design optimization of an IPMSM based on multilevel strategy," IEEE Transactions on Industrial Electronics, Vol. 68, No. 1, 139-148, January 2021.
doi:10.1109/TIE.2020.2965463 Google Scholar
10. Shi, Z., X. Sun, Y. Cai, and Z. Yang, "Robust design optimization of a five-phase PM hub motor for fault-tolerant operation based on taguchi method," IEEE Transactions on Energy Conversion, Vol. 35, No. 4, 2036-2044, December 2020.
doi:10.1109/TEC.2020.2989438 Google Scholar
11. Pan, Z. and S. Fang, "Combined random forest and NSGA-II for optimal design of permanent magnet arc motor," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021. Google Scholar
12. Liu, Q., et al. "Cogging force reduction of double-sided linear flux-switching permanent magnet machine for direct drives," IEEE Transactions on Magnetics, Vol. 49, No. 5, 2275-2278, May 2013.
doi:10.1109/TMAG.2013.2241409 Google Scholar
13. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, August 2017.
doi:10.1109/TIE.2017.2682792 Google Scholar
14. Aun, T., N. M. Salleh, U. F. M. Ali, and N. S. A. Manan, "Optimization of a Cu-O-based sensor for the detection of glucose using a central composite design," IEEE Sensors Journal, Vol. 20, No. 20, 12109-12116, October 15, 2020.
doi:10.1109/JSEN.2020.3000346 Google Scholar
15. Chan, K. S., S. J. Greaves, and S. Rahardja, "Techniques for addressing saddle points in the Response Surface Methodology (RSM)," IEEE Access, Vol. 7, 85613-85621, 2019.
doi:10.1109/ACCESS.2019.2922975 Google Scholar
16. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, Vol. 4, 1942-1948, Perth, WA, Australia, 1995. Google Scholar
17. Tang, G., J. Sheng, D. Wang, and S. Men, "Continuous estimation of human upper limb joint angles by using PSO-LSTM model," IEEE Access, Vol. 9, 17986-17997, 2021.
doi:10.1109/ACCESS.2020.3047828 Google Scholar