Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-16
Comprehensive Analysis of a Novel Hybrid Excited Permanent Magnet Vernier Motor
By
Progress In Electromagnetics Research M, Vol. 111, 27-40, 2022
Abstract
This paper proposes a hybrid excited permanent magnet vernier motor for low-speed and high torque applications in electrical drive. Traditional PM vernier motors are with PM excitation field, and the air-gap magnetic field density is hard to adjust, which limit the wide speed range of PM motor. The hybrid excitation method is proposed in the PM vernier with excitation windings set in the region between modulation pole pieces. With the finite analysis method, the basic structure and the working principle of the proposed motor are introduced, and the low-speed and high-torque characteristics with wide speed range are revealed. Then, the drive control system of the motor is designed and applied with the prototype motor. Finally, the experimental results verify the reliability and effectiveness of the design theory and simulation results.
Citation
Kai Zhang Li Quan Xu Zhong , "Comprehensive Analysis of a Novel Hybrid Excited Permanent Magnet Vernier Motor," Progress In Electromagnetics Research M, Vol. 111, 27-40, 2022.
doi:10.2528/PIERM22022801
http://www.jpier.org/PIERM/pier.php?paper=22022801
References

1. Petkar, S.-G., K. Eshwar, and V.-K. Thippiripati, "A modified model predictive current control of permanent magnet synchronous motor drive," IEEE Transactions on Industrial Electronics, Vol. 68, No. 2, 1025-1034, 2021.
doi:10.1109/TIE.2020.2970671

2. Arafat, A.-K.-M. and S. Choi, "Optimal phase advance under fault-tolerant control of a five- phase permanent magnet assisted synchronous reluctance motor," IEEE Transactions on Industrial Electronics, Vol. 65, No. 4, 2915-2924, 2018.
doi:10.1109/TIE.2017.2750620

3. Chen, Y., X. Zhu, L. Quan, Z. Xiang, Y. Du, and X. Bu, "A V-shaped PM vernier motor with enhanced flux-modulated effect and low torque ripple," IEEE Transactions on Magnetics, Vol. 54, No. 11, 2018.

4. Shen, Y. and Q. Lu, "Design and analysis of linear hybrid-excited slot permanent magnet machines," IEEE Transactions on Magnetics, Vol. 54, No. 11, 2018.

5. Hua, H. and Z.-Q. Zhu, "Novel hybrid-excited switched-flux machine having separate field winding stator," IEEE Transactions on Magnetics, Vol. 52, No. 7, 2016.
doi:10.1109/TMAG.2016.2522920

6. Zheng, M., Z.-Q. Zhu, S. Cai, H.-Y. Li, and Y. Liu, "Influence of magnetic saturation and rotor eccentricity on back EMF of novel hybrid-excited stator slot opening permanent magnet machine," IEEE Transactions on Magnetics, Vol. 54, No. 11, 2018.

7. Liu, Y., Z. Zhang, C. Wang, W. Geng, and H. Wang, "Electromagnetic performance analysis of a new hybrid excitation synchronous machine for electric vehicle applications," IEEE Transactions on Magnetics, Vol. 54, No. 11, 2018.

8. Tapia, J.-A., F. Leonardi, and T.-A. Lipo, "Consequent pole permanent magnet machine with extended field weakening capability," IEEE Transactions on Industry Applications, Vol. 39, No. 6, 1704-1709, 2003.
doi:10.1109/TIA.2003.818993

9. Lin, N., et al., "Mathematical model and equivalent analysis of a novel hybrid excitation synchronous machine," Transactions of China Electrotechnical Society, Vol. 32, No. 3, 149-156, 2017.

10. Du, Y., et al., "Principle and analysis of doubly salient PM motor with π-shaped stator iron core segments," IEEE Transactions on Industrial Electronics, Vol. 66, No. 3, 1962-1972, 2019.
doi:10.1109/TIE.2018.2838060

11. Cheng, M., P. Han, and W. Hua, "General airgap field modulation theory for electrical machines," IEEE Transactions on Industrial Electronics, Vol. 64, No. 8, 6063-6074, 2015.
doi:10.1109/TIE.2017.2682792

12. Du, Y., et al., "Design and analysis of linear stator permanent magnet vernier machines," IEEE Transactions on Magnetics, Vol. 47, No. 10, 4219-4222, 2011.
doi:10.1109/TMAG.2011.2156392

13. Xu, L., G. Liu, W. Zhao, J. Ji, and X. Fan, "High-performance fault tolerant halbach permanent magnet vernier machines for safety-critical applications," IEEE Transactions on Magnetics, Vol. 52, No. 7, 2016.

14. Ching, T.-W., K.-T. Chau, and W. Li, "Power factor improvement of a linear vernier permanent- magnet machine using auxiliary DC field excitation," IEEE Transactions on Magnetics, Vol. 52, No. 7, 2016.
doi:10.1109/TMAG.2016.2524533

15. Liu, X., et al., "A new magnetic field modulation type of brushless double-fed machine," IEEE Transactions on Applied Superconductivity, Vol. 28, No. 3, 2018.

16. Li, J. and K. Wang, "A parallel hybrid excited machine using consequent pole rotor and AC field winding," IEEE Transactions on Magnetics, Vol. 55, No. 6, 2019.

17. Tarimer, I., "Investigation of the effects of rotor pole geometry and permanent magnet to line start permanent magnet synchronous motor's efficiency," Elektronika Ir Elektrotechnika, Vol. 90, No. 2, 67-72, 2009.

18. Tarimer, I. and R. Gurbuz, "Sizing of electrical motors for gearless and directly stimulating applications," Elektronika Ir Elektrotechnika, Vol. 84, No. 4, 21-26, 2008.

19. Tarimer, I., A. Akpunar, and R. Gurbuz, "Design of a direct sliding gearless electrical motor for an ergonomic electrical wheelchair," Elektronika ir Elektrotechnika, Vol. 83, No. 3, 75-80, 2008.

20. Tarimer, I. and A. Akpunar, "Designing an ergonomic electric wheelchair in which is settled gearless and direct drive electric motor," 3rd Automation Symposium, 21-25, Pamukkale University, Denizli, November 11-12, 2008.