Vol. 111
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-16
Design of a Novel Fractal Quad-Band-Notched UWB Antenna with Bionic Structure
By
Progress In Electromagnetics Research M, Vol. 111, 41-52, 2022
Abstract
In this paper, we propose a quadruple band-notched ultra-wideband (UWB) antenna with a novel virus-mimicking structure. The proposed antenna is fed by coplanar waveguide in the FR4 material. It has a compact size of 27 × 29 × 0.8 mm3. In order to reject narrowband signal interference in ultra-wideband communication, the desired notches in WiMAX (3.3-3.6 GHz), WLAN (5.1-5.8 GHz), downlink X satellite communication system (7.25-7.75 GHz), and ITU 8GHz band (8.025-8.4 GHz) are realized. Except for these, impedance bandwidth of the designed antenna is less than -10 dB from 2.5 GHz to 15 GHz, with average gain of 3 dBi. At the same time, it basically meets the omnidirectional requirement. With low profile and compact structure, the proposed antenna can be integrated into the ultra-wideband system, which can meet the requirements of ultra-wideband communication and improve the anti-interference ability of ultra-wideband communication.
Citation
Lei Zhang, and Quanyuan Feng, "Design of a Novel Fractal Quad-Band-Notched UWB Antenna with Bionic Structure," Progress In Electromagnetics Research M, Vol. 111, 41-52, 2022.
doi:10.2528/PIERM22030301
References

1. Federal Communication Commission "First report and order revision of part 15 of the Commission's rules regarding ultra-wideband transmission system," Tech. Rep., ET 98-153, FCC Washington, DC, USA, 2002.

2. Ryu, K. S. and A. A. Kishk, "UWB antenna with single or dual band-notches for lower WLAN band and upper WLAN band," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3942-3950, 2009.
doi:10.1109/TAP.2009.2027727

3. Rahman, M. and J. D. Park, "The smallest form factor UWB antenna with quintuple rejection bands for IoT applications utilizing RSRR and RCSRR," Sensors, Vol. 18, No. 3, 911, 2018.
doi:10.3390/s18030911

4. Chen, Z. N., "UWB antennas: From hype, promise to reality," 2007 Loughborough Antennas and Propagation Conference, 19-22, Loughborough, UK, 2007.

5. Gao, G., B. Hu, C. Yang, and S. Wang, "Investigation of a notched UWB antenna with opening and shorting resonators," Microwave and Optical Technology Letters, Vol. 59, No. 7, 1733-1739, 2017.
doi:10.1002/mop.30614

6. Shaik, L. A., C. Saha, Y. M. M. Antar, and J. Y. Siddiqui, "An antenna advance for cognitive radio: Introducing a multilayered split ring resonator-loaded printed ultrawideband antenna with multifunctional characteristics," IEEE Antennas and Propagation Magazine, Vol. 60, No. 2, 20-33, 2018.
doi:10.1109/MAP.2018.2796027

7. Ojaroudi, M., N. Ojaroudi, and N. Ghadimi, "Dual band-notched small monopole antenna with novel coupled inverted U-ring strip and novel fork-shaped slit for UWB applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, No. 12, 182-185, 2013.
doi:10.1109/LAWP.2013.2245296

8. Xu, H., K. Xu, W. Nie, and Y. Liu, "A coplanar waveguide fed UWB antenna using embedded E-shaped structure with WLAN band-rejection," Frequenz, Vol. 72, No. 7, 325-332, 2018.
doi:10.1515/freq-2017-0083

9. Yadav, A., S. Agrawal, and R. P. Yadav, "SRR and S-shape slot loaded triple band notched UWB antenna," AEU --- International Journal of Electronics and Communications, Vol. 79, 192-198, 2017.
doi:10.1016/j.aeue.2017.06.003

10. Chakraborty, M., S. Pal, and N. Chattoraj, "Quad notch UWB antenna using combination of slots and split-ring resonator," Int. J. RF Microw. Comput. Aided Eng., Vol. 30, No. 3, 2020.
doi:10.1002/mmce.22086

11. Lin, C., P. Jin, and R. W. Ziolkowski, "Single, dual and tri-band-notched Ultrawideband (UWB) antennas using Capacitively Loaded Loop (CLL) resonators," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 102-109, 2012.
doi:10.1109/TAP.2011.2167947

12. Wang, J., "Dual band-notched UWB antenna with improved radiation pattern," Progress In Electromagnetics Research C, Vol. 103, 59-70, 2020.

13. Peng, L. and C. Ruan, "UWB band-notched monopole antenna design using electromagnetic- bandgap structures," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 4, 1074-1081, 2011.
doi:10.1109/TMTT.2011.2114090

14. Li, T., H. Q. Zhai, G. H. Li, and C. H. Liang, "Design of compact UWB band-notched antenna by means of electromagnetic-bandgap structures," Electronics Letters, Vol. 48, No. 11, 608-609, 2012.
doi:10.1049/el.2012.0972

15. Ghosh, A., G. Sen, M. Kumar, and S. Das, "Design of UWB antenna integrated with dual GSM functionalities and dual notches in the UWB region using single branched EBG inspired structure," ET Microwave Antennas Propagation, Vol. 13, No. 10, 1564-1571, 2019.
doi:10.1049/iet-map.2018.5676

16. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "Compact SRR loaded UWB circular monopole antenna with frequency notch characteristics," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 8, 4015-4020, 2014.
doi:10.1109/TAP.2014.2327124

17. Dalal, P. and S. K. Dhull, "Upper WLAN band notch UWB monopole antenna using compact two via slot electromagnetic band gap structure," Progress In Electromagnetics Research C, Vol. 100, 161-171, 2020.
doi:10.2528/PIERC20012101

18. Naser, S. and N. Dib, "Printed UWB Pacman-shaped antenna with two frequency rejection bands," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 32, No. 3, 186-192, 2017.

19. Yang, B. and S. Qu, "A compact integrated Bluetooth UWB dual-band notch antenna for automotive communications," AEU --- International Journal of Electronics and Communications, 104-113, 2017.
doi:10.1016/j.aeue.2017.06.031

20. Irum Jafri, S., R. Saleem, and K. Khokhar, "CPW-fed UWB antenna with tri-band frequency notch functionality," Applied Computational Electromagnetics Society (ACES) Journal, Vol. 34, No. 9, 1274-1279, 2019.

21. Ghosh, A., T. Mandal, and S. Das, "Design and analysis of triple notch ultrawideband antenna using single slotted electromagnetic bandgap inspired structure," Journal of Electromagnetic Waves and Applications, Vol. 33, No. 11, 1391-1405, 2019.
doi:10.1080/09205071.2019.1609377

22. Kundu, S. and S. K. Jana, "Leaf-shaped CPW-fed UWB antenna with triple notch bands for ground penetrating radar applications," Microw Optical Technology Letters, Vol. 60, No. 4, 930-936, 2018.
doi:10.1002/mop.31075

23. Jhanwar, H. S. D., M. M. Sharma, and J. K. Deegwal, "A printed monopole ellipzoidal UWB antenna with four band rejection characteristics," AEU --- International Journal of Electronics and Communications, Vol. 83, 222-232, 2018.

24. Modak, S., T. Khan, and R. H. Laskar, "Loaded UWB monopole antenna for quadband-notched characteristics," IETE Technical Review, 1-9, 2021.
doi:10.1080/02564602.2021.1878942

25. Islam, M. M., M. T. Islam, M. Samsuzzaman, and M. R. I. Faruque, "Five band-notched Ultrawide Band (UWB) antenna loaded with C-shaped slots," Microwave Optical Technology Letters, Vol. 57, No. 6, 1470-1475, 2015.
doi:10.1002/mop.29117

26. Luo, S., Y. Chen, D. Wang, Y. Liao, and Y. Li, "A monopole UWB antenna with sextuple band- notched based on SRRs and U-shaped parasitic strips," AEU --- International Journal of Electronics and Communications, Vol. 120, 153206, 2020.
doi:10.1016/j.aeue.2020.153206

27. Hasan Mahfuz, M. M., M. R. Islam, M. H. Habaebi, N. Sakib, and A. K. M. Zakir Hossain, "A notched UWB microstrip patch antenna for 5G lower and FSS bands," Microwave and Optical Technology Letters, Vol. 64, No. 4, 796-802, 2022.
doi:10.1002/mop.33184

28. Alizadeh, F., C. Ghobadi, J. Nourinia, H. Abdi, and B. Mohammadi, "UWB dual-notched planar antenna by utilizing compact open meander slitted EBG structure," AEU --- International Journal of Electronics and Communications, Vol. 136, 2021.

29. Kodali, R. R., P. Siddaiah, and M. N. G. Prasad, "Design of quad band operational UWB antenna with triple notch bands using meander line slot," Progress In Electromagnetics Research M, Vol. 109, 63-73, 2022.