1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
2. Balani, W., et al. "Design techniques of super-wideband antenna --- Existing and future prospective," IEEE Access, Vol. 7, 141241-141257, 2019.
doi:10.1109/ACCESS.2019.2943655 Google Scholar
3. "Revision of Part 15 of the Commission's rules regarding ultra wideband transmission systems,", 2002.
doi:10.1109/ACCESS.2019.2943655 Google Scholar
4. Ali, T., B. K. Subhash, S. Pathan, and R. C. Biradar, "A compact decagonal-shaped UWB monopole planar antenna with truncated ground plane," Microwave and Optical Technology Letters, Vol. 60, No. 12, 2937-2944, Dec. 2018, doi: 10.1002/mop.31448.
doi:10.1002/mop.31448 Google Scholar
5. Dhasarathan, V., M. Sharma, M. Kapil, P. C. Vashist, S. K. Patel, and T. K. Nguyen, "Integrated bluetooth/LTE2600 superwideband monopole antenna with triple notched (WiMAX/WLAN/DSS) band characteristics for UWB/X/Ku band wireless network applications," Wireless Networks, Vol. 26, No. 4, 2845-2855, May 2020, doi: 10.1007/s11276-019-02230-0.
doi:10.1007/s11276-019-02230-0 Google Scholar
6. Alluri, S. and N. Rangaswamy, "Compact high bandwidth dimension ratio steering-shaped super wideband antenna for future wireless communication applications," Microwave and Optical Technology Letters, Vol. 62, No. 12, 3985-3991, Dec. 2020, doi: 10.1002/mop.32541.
doi:10.1002/mop.32541 Google Scholar
7. Dey, S. and N. C. Karmakar, "Design of novel super wide band antenna close to the fundamental dimension limit theory," Scientific Reports, Vol. 10, No. 1, 16306, Dec. 2020, doi: 10.1038/s41598-020-73478-2.
doi:10.1038/s41598-020-73478-2 Google Scholar
8. Azim, R., M. T. Islam, H. Arshad, Md. M. Alam, N. Sobahi, and A. I. Khan, "CPW-fed super-wideband antenna with modified vertical bow-tie-shaped patch for wireless sensor networks," IEEE Access, Vol. 9, 5343-5353, 2021, doi: 10.1109/ACCESS.2020.3048052.
doi:10.1109/ACCESS.2020.3048052 Google Scholar
9. Okan, T., "A compact octagonal-ring monopole antenna for super wideband applications," Microwave and Optical Technology Letters, Vol. 62, No. 3, 1237-1244, Mar. 2020, doi: 10.1002/mop.32117.
doi:10.1002/mop.32117 Google Scholar
10. Singhal, S. and A. K. Singh, "Modified star-star fractal (MSSF) super-wideband antenna," Microwave and Optical Technology Letters, Vol. 59, No. 3, 624-630, Mar. 2017, doi: 10.1002/mop.30357.
doi:10.1002/mop.30357 Google Scholar
11. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, May 2018, doi: 10.1016/j.aeue.2018.03.004.
doi:10.1016/j.aeue.2018.03.004 Google Scholar
12. Rahman, M. A., M. S. J. Singh, M. Samsuzzaman, and M. T. Islam, "A compact skull-shaped defected ground super wideband microstrip monopole antenna for short-distance wireless communication," International Journal of Communication Systems, Vol. 33, No. 14, e4527, Sep. 2020, doi: 10.1002/dac.4527.
doi:10.1002/dac.4527 Google Scholar
13. Oskouei, H. R. D., A. R. Dastkhosh, A. Mirtaheri, and M. Naseh, "A small cost-effective super ultra-wideband microstrip antenna with variable band-notch filtering and improved radiation pattern with 5G/IoT applications," Progress In Electromagnetics Research M, Vol. 83, 191-202, 2019.
doi:10.2528/PIERM19051802 Google Scholar
14. Palaniswamy, S. K., M. Kanagasabai, S. Arun Kumar, M. G. N. Alsath, S. Velan, and J. K. Pakkathillam, "Super wideband printed monopole antenna for ultra wideband applications," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 133-141, Feb. 2017, doi: 10.1017/S1759078715000951.
doi:10.1017/S1759078715000951 Google Scholar
15. Rahman, S. U., Q. Cao, H. Ullah, and H. Khalil, "Compact design of trapezoid shape monopoleantenna for SWB application," Microwave and Optical Technology Letters, Vol. 61, No. 8, 1931-1937, Aug. 2019, doi: 10.1002/mop.31805.
doi:10.1002/mop.31805 Google Scholar
16. Malik, R., P. Singh, H. Ali, and T. Goel, "A star shaped superwide band fractal antenna for 5G applications," 2018 3rd International Conference for Convergence in Technology (I2CT), 2018, doi: 10.1109/I2CT.2018.8529404. Google Scholar
17. Seyfollahi, A. and J. Bornemann, "Printed-circuit monopole antenna for super-wideband applications," European Conference on Antennas & Propagation, 2018. Google Scholar
18. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Printed monopole antenna with tapered feedline, feed region and patch for super wideband applications," IET Microwaves, Antennas & Propagation, Vol. 8, No. 1, 39-45, Jan. 2014, doi: 10.1049/iet-map.2013.0094.
doi:10.1049/iet-map.2013.0094 Google Scholar
19. Ray, K. P. and S. Tiwari, "Ultra wideband printed hexagonal monopole antennas," IET Microwaves, Antennas & Propagation, Vol. 4, No. 4, 437, 2010, doi: 10.1049/iet-map.2008.0201.
doi:10.1049/iet-map.2008.0201 Google Scholar
20. Kundu, S., "Experimental study of a printed ultra-wideband modified circular monopole antenna," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1388-1393, May 2019.
doi:10.1002/mop.31736 Google Scholar
21. Ray, K. P. and Y. Ranga, "Ultrawideband printed elliptical monopole antennas," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 4, 1189-1192, Apr. 2007, doi: 10.1109/TAP.2007.893408.
doi:10.1109/TAP.2007.893408 Google Scholar
22. Manohar, M., R. S. Kshetrimayum, and A. K. Gogoi, "Super wideband antenna with single band suppression," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 1, 143-150, Feb. 2017, doi: 10.1017/S1759078715000963.
doi:10.1017/S1759078715000963 Google Scholar
23. Balani, W., M. Sarvagya, A. Samasgikar, T. Ali, and P. Kumar, "Design and analysis of super wideband antenna for microwave applications," Sensors, Vol. 21, No. 2, 477, Jan. 2021, doi: 10.3390/s21020477.
doi:10.3390/s21020477 Google Scholar
24. Das, S., D. Mitra, and S. R. Bhadra Chaudhuri, "Staircase fractal loaded microstrip patch antenna for super wide band operation," Progress In Electromagnetics Research C, Vol. 95, 183-194, 2019.
doi:10.2528/PIERC19070105 Google Scholar
25. Singhal, S., "Asymmetrically fed octagonal Sierpinski band-notched super-wideband antenna," Journal of Computational Electronics, Vol. 16, No. 1, 210-219, Mar. 2017, doi: 10.1007/s10825-016-0948-5.
doi:10.1007/s10825-016-0948-5 Google Scholar
26. Mao, S.-G., J.-C. Yeh, and S.-L. Chen, "Ultrawideband circularly polarized spiral antenna using integrated balun with application to time-domain target detection," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 7, 1914-1920, Jul. 2009. Google Scholar
27. Kundu, S. and A. Chatterjee, "A compact super wideband antenna with stable and improved radiation using super wideband frequency selective surface," AEU --- International Journal of Electronics and Communications, Vol. 150, 154200, Jun. 2022, doi: 10.1016/j.aeue.2022.154200.
doi:10.1016/j.aeue.2022.154200 Google Scholar
28. Sharma, V., Gunaram, J. K. Deegwal, and D. Mathur, "Super-wideband compact offset elliptical ring patch antenna for 5G applications," Wireless Personal Communications, Vol. 122, No. 2, 2022, doi: 10.1007/s11277-021-08965-4.
doi:10.1007/s11277-021-08965-4 Google Scholar
29. Dey, S., M. S. Arefin, and N. C. Karmakar, "Design and experimental analysis of a novel compact and flexible super wide band antenna for 5G," IEEE Access, Vol. 9, 46698-46708, 2021, doi: 10.1109/ACCESS.2021.3068082.
doi:10.1109/ACCESS.2021.3068082 Google Scholar
30. Singh, S., R. Varma, M. Sharma, and S. Hussain, "Superwideband monopole reconfigurable antenna with triple notched band characteristics for numerous applications in wireless system," Wireless Personal Communications, Vol. 106, No. 3, 987-999, Jun. 2019, doi: 10.1007/s11277-019-06199-z.
doi:10.1007/s11277-019-06199-z Google Scholar
31. Tang, M.-C., R. W. Ziolkowski, and S. Xiao, "Compact hyper-band printed slot antenna with stable radiation properties," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 6, 2962-2969, Jun. 2014, doi: 10.1109/TAP.2014.2314299.
doi:10.1109/TAP.2014.2314299 Google Scholar
32. Haraz, O. M., A.-R. Sebak, and S. A. Alshebeili, "Design of a printed log-periodic dipole array antenna with high gain for millimeter-wave applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 25, No. 3, 185-193, Mar. 2015, doi: 10.1002/mmce.20848.
doi:10.1002/mmce.20848 Google Scholar