Vol. 113
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-09-16
A Tri-Band Miniaturized Antenna Using Fractal Defected Ground Structure for C/X and Ku-Band Applications
By
Progress In Electromagnetics Research M, Vol. 113, 115-128, 2022
Abstract
In this article, a miniaturized antenna with a Koch fractal defected ground structure (KFDGS) is proposed for C/X and Ku-band applications. The performance of an inset-fed lambda/2 patch antenna is examined using an iterated KFDGS etched on the ground plane. A conventional antenna operated at 16 GHz with a return loss of -34.31 dB is constructed, followed by a tri-band miniaturized antenna operating at 6.35, 9, and 13.05 GHz with a return loss of -22.41, -25.05, and -28.54 dB in order to achieve miniaturization of 60.31%, 43.75%, and 18.43% respectively. An antenna is designed on a Roger RT Duroid substrate, fabricated, and tested with dimensions of 12×14×0.8 mm3, and its impact on reduction in size performance has been evaluated with measured peak directivity and gain of 3.07 and 2.80 dBi at 6.35 GHz, 4.78 and 4.65 dBi at 9 GHz, and 7.73 and 7.76 dBi at 13.05 GHz, respectively. A good agreement is found between the measurements and simulations.
Citation
Kakani Suvarna Nallagarla Ramamurthy Dupakuntla Vishnu Vardhan , "A Tri-Band Miniaturized Antenna Using Fractal Defected Ground Structure for C/X and Ku-Band Applications," Progress In Electromagnetics Research M, Vol. 113, 115-128, 2022.
doi:10.2528/PIERM22032301
http://www.jpier.org/PIERM/pier.php?paper=22032301
References

1. Fallahpour, M. and R. Zoughi, "Antenna miniaturization techniques: A review of topology- and material-based methods," IEEE Antennas and Propagation Magazine, Vol. 60, No. 1, 38-50, Feb. 2018.
doi:10.1109/MAP.2017.2774138

2. Ghosh, B., S. M. Haque, D. Mitra, and S. Ghosh, "A loop loading technique for the miniaturization of non-planar and planar antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 6, 2116-2121, Jun. 2010.
doi:10.1109/TAP.2010.2046842

3. Ghosh, B., S. K. Moinul Haque, and N. Rao Yenduri, "Miniaturization of slot antennas using wire loading," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 488-491, 2013.
doi:10.1109/LAWP.2013.2255857

4. Ghosh, B., S. M. Haque, and D. Mitra, "Miniaturization of slot antennas using slit and strip loading," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3922-3927, Oct. 2011.
doi:10.1109/TAP.2011.2163754

5. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 44, 672-676, May 1996.
doi:10.1109/8.496253

6. Erentok, A. and R. W. Ziolkowski, "Metamaterial-inspired efficient electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 56, 691-707, Mar. 2008.
doi:10.1109/TAP.2008.916949

7. Wheeler, H. A., "Fundamental limitations of small antennas," Proceedings of the I.R.E, Vol. 35, 1479-1484, Dec. 1947.

8. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Applied Physics, Vol. 19, 1163-1175, Dec. 1948.
doi:10.1063/1.1715038

9. Haque, S. K. M. and K. M. Parvez, "Slot antenna miniaturization using slit, strip, and loop loading techniques," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 5, 2215-2221, May 2017.
doi:10.1109/TAP.2017.2684191

10. Jahani, S., M. J. Rashed, and M. Shahabadi, "Miniaturization of circular patch antennas using MNG metamaterials," IEEE Transactions on Antennas and Propagation, Vol. 9, 1194-1196, 2010.

11. Khan, M. U., S. S. Mohammad, and R. Mittra, "Microstrip patch antenna miniaturization techniques: A review," IET Microwave Antennas and Propagation, Vol. 9, No. 9, 913-922, 2015.
doi:10.1049/iet-map.2014.0602

12. Shrestha, S., S. R. Lee, and D. Y. Choi, "A new fractal-based miniaturized dual band patch antenna for RF energy harvesting," International Journal of Antennas and Propagation, 1-9, 2014.
doi:10.1155/2014/805052

13. Sedghi, M. S., M. Naser-Moghadasi, and F. B. Zarrabi, "Microstrip antenna miniaturization with fractal EBG and SRR loads for linear and circular polarizations," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 891-901, May 2017.
doi:10.1017/S1759078716000726

14. Bharath Reddy, G., M. H. Adhithya, and D. Sriram Kumar, "Miniaturization of microstrip slot antenna using high refractive index metamaterial based on single ring split ring resonator," Progress In Electromagnetics Research Letters, Vol. 93, 115-122, 2020.
doi:10.2528/PIERL20060601

15. Sharma, N. and V. Sharma, "A design of Microstrip Patch Antenna using hybrid fractal slot for wideband applications," Ain Shams Engineering Journal, Vol. 9, No. 4, 2491-2497, Dec. 2018.
doi:10.1016/j.asej.2017.05.008

16. Ao, J., J. Huang, W. Wu, and N. Yuan, "A miniaturized Vivaldi antenna by loading with parasitic patch and lumped resistor," AEU: International Journal of Electronics and Communications, Vol. 81, 158-162, Nov. 2017.

17. Er Rebyiy, R., J. Zbitou, M. Latrach, A. Tajmouati, A. Errkik, and L. E. L. Abdellaoui, "New miniature planar microstrip antenna using DGS for ISM applications," Telkomnika, Vol. 15, No. 3, 1149-1154, Sep. 2017.
doi:10.12928/telkomnika.v15i3.6864

18. Oulhaj, O., N. A. Touhami, M. Aghoutane, and A. Tazon, "A miniature microstrip patch antenna array with defected ground structure," International Journal of Microwave and Optical Technology, Vol. 11, No. 1, 32-39, Jan. 2016.

19. Elftouh, H., N. A. Touhami, and M. Aghoutane, "Miniaturized microstrip patch antenna with spiral defected microstrip structure," Progress In Electromagnetics Research Letters, Vol. 53, 37-44, 2015.
doi:10.2528/PIERL15031003

20. Elftouh, H., N. A. Touhami, M. Aghoutane, S. El Amrani, A. Tazon, and M. Boussouis, "Miniaturized microstrip patch antenna with defected ground structure," Progress In Electromagnetics Research C, Vol. 55, 25-33, 2014.
doi:10.2528/PIERC14092302

21. Ghaloua, A., J. Zbitou, L. El Abdellaoui, M. Latrach, A. Tajmouati, and A. Errkik, "A novel configuration of a miniature printed antenna array based on defected ground structure," International Journal of Intelligent Engineering and Systems, Vol. 12, No. 1, 211-220, 2019.
doi:10.22266/ijies2019.0228.21

22. Huang, Y. and K. Boyle, Antennas from Theory to Practice, John Wiley & Sons Ltd, UK, 2008.

23. Volakis, J. L., C.-C. Chen, and K. Fujimoto, Small Antennas: Miniaturization Techniques and Applications, McGraw-Hill, New York, NY, 2010.

24. Hansen, R. C. and R. E. Collin, Small Antenna Handbook, Wiley, Hoboken, NJ, 2011.
doi:10.1002/9781118106860

25. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 7, 2502-2512, 2011.
doi:10.1109/TAP.2011.2152322

26. Elavarasi, C. and T. Shanmuganantham, "Multiband SRR loaded Koch star fractal antenna," Alexandria Engineering Journal, Vol. 57, No. 3, 1549, 2018.
doi:10.1016/j.aej.2017.04.001

27. Swetha, A. and K. Rama Naidu, "Miniaturized planar antenna with enhanced gain characteristics for 5.2 GHz WLAN application," International Journal of Electronics, Vol. 108, No. 12, 2137-2154, 2021.
doi:10.1080/00207217.2021.1908612

28. Meena, M. L., M. Kumar, G. Parmar, and R. S. Meena, "Design analysis and modeling of UWB antenna with elliptical slotted ground structure for applications in C- & X-bands," Progress In Electromagnetics Research C, Vol. 63, 193-207, 2016.
doi:10.2528/PIERC16030804