Vol. 110
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-05-07
Pre-Compliance Near-Field Tests Based on Oscilloscopes
By
Progress In Electromagnetics Research M, Vol. 110, 109-118, 2022
Abstract
This paper covers the use of oscilloscopes in near-field, pre-compliance radiating tests. Using commercial low-cost planar magnetic probes, a procedure is presented to use the time-domain waveforms to address emitted radiation patterns. In spite of its lower sensitivity in relation to spectrum analyzers, a comparison between both instruments is presented, with the inferior response of the oscilloscope compensated by means of off-the-shelf broadband amplifiers. Complete system calibration is described and performed, relating the voltage measurements in a transmission-line structure to field amplitudes provided by a full-wave simulation. Two different typical devices are tested using the procedure here developed: a direct current motor, driven by a square wave, and a microprocessor board. Results show the potential use of the almost omnipresent instrument in sophisticated field evaluations, enabling its use in situations where spectrum analyzers are not available.
Citation
Marcelo Bender Perotoni, Walter M. Silva, Danilo B. Almeida, and Kenedy M. G. Santos, "Pre-Compliance Near-Field Tests Based on Oscilloscopes," Progress In Electromagnetics Research M, Vol. 110, 109-118, 2022.
doi:10.2528/PIERM22032504
References

1. Ott, H. W., Electromagnetic Compatibility Engineering, Wiley, Hoboken, 2009.
doi:10.1002/9780470508510

2. Pontt, J., R. Olivares, H. Carrasco, V. Keller, M. López, H. Robles, S. Díaz, A. Toro, and C. Fuentes, "Developing a simple, modern and cost effective system for EMC precompliance measurements of conducted emissions," 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, September 2007.

3. Parvis, M., G. Perrone, and A. Vallan, "A precompliance EMC test-set based on a sampling oscilloscope," IEEE Trans. Instrum. Meas., Vol. 54, No. 4, 1220-1223, 2003.
doi:10.1109/TIM.2003.816839

4. Liu, Y. and B. Ravelo, "Fully time-domain scanning of EM near-field radiated by RF circuits," Progress In Electromagnetics Research B, Vol. 57, 21-46, 2014.

5. Bienkowski, P. and H. Trzaska, Electromagnetic Measurements in the Near Field, Scitech, Raleigh, 2012.
doi:10.1049/SBEW042E

6. Fano, W. G., R. Alonso, and L. M. Carducci, "Near field magnetic probe applied to switching power supply," IEEE Global Electromagnetic Compatibility Conference (GEMCCON), La Plata, Argentina, November 2016.

7. Ramesan, R. and D. Madathil, "Modeling of radiation source using an equivalent dipole moment model," Progress In Electromagnetics Research B, Vol. 89, 157-175, 2020.
doi:10.2528/PIERB20102103

8. Mynster, A. P. and M. Srensen, "Validation of EMC near-field scanning amplitude and phase measurement data," International Symposium on Electromagnetic Compatibility - EMC EUROPE, Rome, Italy, 2012.

9. Attaran, A., W. Handler, and B. A. Chronik, "2mm radius loop antenna and linear active balun for near field measurement of magnetic eld in MRI-conditional testing of medical devices," IEEE Trans. Electromagn. Compat., Vol. 62, No. 1, 186-193, 2020.
doi:10.1109/TEMC.2019.2896519

10. Liu, S., X. Fang, T. Song, M.-H. Kim, H.-W. Shim, and C. Hwang, "Field coupling mechanism investigation of mm-Wave magnetic near-field probe based on a generalized equivalent circuit," IEEE Trans. Instrum. Meas., Vol. 71, Art no. 8002409, 1-9, 2022.

11. Paul, C. R., Introduction to Electromagnetic Compatibility, Wiley, Hoboken, 2006.

12. Yan, Z., J. Wang, W. Zhang, Y. Wang, and J. Fan, "A simple miniature ultrawideband magnetic field probe design for magnetic near-field measurements," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5459-5465, 2016.
doi:10.1109/TAP.2016.2606556

13. Sivaraman, N., F. Ndagljlmana, M. Kadi, and Z. Riah, "Broad band PCB probes for near field measurements," 2017 International Symposium on Electromagnetic Compatibility - EMC Europe, Angers, France, September 2017.

14. Bang, J., Y. Park, K. Jung, and J. Choi, "A compact low-cost wideband shielded-loop probe with enhanced performance for magnetic near-field measurements," IEEE Trans. Electromagn. Compat., Vol. 62, No. 5, 1921-1928, 2020.
doi:10.1109/TEMC.2019.2946714

15. Kanda, M., "Standard probes for electromagnetic field measurements," IEEE Trans. Antennas Propag., Vol. 41, No. 10, 1349-1364, 1993.
doi:10.1109/8.247775

16. Dimitrijević, T., A. Atanaskovic, N. S. Dončov, D. W. P. Thomas, C. Smartt, and M. H. Baharuddin, "Calibration of the loop probe for the near-field measurement," International Journal of Microwave and Wireless Technologies, Vol. 12, No. 9, 878-884, 2020.
doi:10.1017/S1759078720000690

17. Choi, G. R. and H. H. Park, "Analytical probe factor models for rectangular loop probes used in near-field measurements," IEEE Trans. Electromagn. Compat., Vol. 63, No. 6, 1781-1790, 2021.
doi:10.1109/TEMC.2021.3089906

18. Oganezova, I., R. Kado, B. Khvitia, Z. Kuchadze, A. Gheonjian, and R. Jobava, "EMC model of low voltage DC motor," 2014 IEEE International Symposium on Electromagnetic Compatibility, Raleigh, US, November 2014.