1. Yang, Y., S. Bremner, C. Menictas, and M. Kay, "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Vol. 91, 109-125, 2018.
doi:10.1016/j.rser.2018.03.047 Google Scholar
2. Oh, T. H., M. Hasanuzzaman, J. Selvaraj, S. C. Teo, and S. C. Chua, "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth --- An update," Renewable and Sustainable Energy Reviews, Vol. 81, 3021-3031, 2018.
doi:10.1016/j.rser.2017.06.112 Google Scholar
3. Sherwood, J., "The significance of biomass in a circular economy," Bioresource Technology, Vol. 300, 122755, 2020.
doi:10.1016/j.biortech.2020.122755 Google Scholar
4. Karnauskas, K. B., J. K. Lundquist, and L. Zhang, "Southward shift of the global wind energy resource under high carbon dioxide emissions," Nature Geoscience, Vol. 11, No. 1, 38-43, 2018.
doi:10.1038/s41561-017-0029-9 Google Scholar
5. Kumar, K. R., N. K. Chaitanya, and N. S. Kumar, "Solar thermal energy technologies and its applications for process heating and power generation --- A review," Journal of Cleaner Production, Vol. 282, 125296, 2021.
doi:10.1016/j.jclepro.2020.125296 Google Scholar
6. Kim, S., R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, "Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms," Proceedings of the IEEE, Vol. 102, No. 11, 1649-1666, 2014.
doi:10.1109/JPROC.2014.2357031 Google Scholar
7. Song, C., Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, and M. Kod, "A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3160-3171, 2016.
doi:10.1109/TAP.2016.2565697 Google Scholar
8. Saeed, W., N. Shoaib, H. M. Cheema, and M. U. Khan, "RF energy harvesting for ubiquitous, zero power wireless sensors," International Journal of Antennas and Propagation, Vol. 2018, 2018. Google Scholar
9. Shen, S., C. Y. Chiu, and R. D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 644-656, 2017.
doi:10.1109/TAP.2017.2786320 Google Scholar
10. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, 2020.
doi:10.1109/MAP.2020.3012872 Google Scholar
11. Chandrasekaran, K. T., K. Agarwal, A. Alphones, R. Mittra, and M. F. Karim, "Compact dual-band metamaterial-based high-efficiency rectenna: An application for ambient electromagnetic energy harvesting," IEEE Antennas and Propagation Magazine, Vol. 62, No. 3, 18-29, 2020.
doi:10.1109/MAP.2020.2982091 Google Scholar
12. Joseph, S. D., Y. Huang, and S. S. Hsu, "Transmission lines-based impedance matching technique for broadband rectifier," IEEE Access, Vol. 9, 4665-4672, 2020. Google Scholar
13. Gu, X., P. Burasa, S. Hemour, and K. Wu, "Recycling ambient RF energy: Far-field wireless power transfer and harmonic backscattering," IEEE Microwave Magazine, Vol. 22, No. 9, 60-78, 2021.
doi:10.1109/MMM.2021.3086335 Google Scholar
14. Erkmen, F. and O. M. Ramahi, "A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4021-4028, 2021.
doi:10.1109/TMTT.2021.3087622 Google Scholar
15. Bougas, I. D., M. S. Papadopoulou, A. D. Boursianis, K. Kokkinidis, and S. K. Goudos, "State-of-the-art techniques in RF energy harvesting circuits," Telecom, Vol. 2, No. 4, 369-389, Multidisciplinary Digital Publishing Institute, December 2021.
doi:10.3390/telecom2040022 Google Scholar
16. Furuta, T., M. Ito, N. Nambo, K. Itoh, K. Noguchi, and J. Ida, "The 500 MHz band low power rectenna for DTV in the Tokyo area," 2016 IEEE Wireless Power Transfer Conference (WPTC), 1-3, IEEE, May 2016. Google Scholar
17. Dhiman, L. and S. Singh, "Design and optimization of DGS based T-stub microstrip patch antenna for wireless applications," Advancements in Engineering and Technology, 631, 2015. Google Scholar
18. Song, C., Y. Huang, J. Zhou, and P. Carter, "Improved ultrawideband rectennas using hybrid resistance compression technique," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2057-2062, 2017.
doi:10.1109/TAP.2017.2670359 Google Scholar
19. Palazzi, V., J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, and M. M. Tentzeris, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2017.
doi:10.1109/TMTT.2017.2721399 Google Scholar
20. Zheng, S., W. Liu, and Y. Pan, "Design of an ultra-wideband high-efficiency rectifier for wireless power transmission and harvesting applications," IEEE Transactions on Industrial Informatics, Vol. 15, No. 6, 3334-3342, 2018.
doi:10.1109/TII.2018.2874460 Google Scholar
21. Loubet, G., A. Takacs, and D. Dragomirescu, "Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications," IEEE Access, Vol. 7, 24679-24690, 2019.
doi:10.1109/ACCESS.2019.2900161 Google Scholar
22. Okba, A., A. Takacs, and H. Aubert, "Compact rectennas for ultra-low-power wirelss transmission applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 5, 1697-1707, 2019.
doi:10.1109/TMTT.2019.2902552 Google Scholar
23. Loubet, G., A. Takacs, E. Gardner, A. De Luca, F. Udrea, and D. Dragomirescu, "LoRaWAN battery-free wireless sensors network designed for structural health monitoring in the construction domain," Sensors, Vol. 19, No. 7, 1510, 2019.
doi:10.3390/s19071510 Google Scholar
24. Tampouratzis, M. G., D. Vouyioukas, D. Stratakis, and T. Yioultsis, "Use ultra-wideband discone rectenna for broadband RF energy harvesting applications," Technologies, Vol. 8, No. 2, 21, 2020.
doi:10.3390/technologies8020021 Google Scholar
25. Wagih, M., A. S. Weddell, and S. Beeby, "Meshed high-impedance matching network-free rectenna optimized for additive manufacturing," IEEE Open Journal of Antennas and Propagation, Vol. 1, 615-626, 2020.
doi:10.1109/OJAP.2020.3038001 Google Scholar
26. Chuma, E. L., Y. Iano, and L. L. B. Roger, "Ultra-wide band rectenna design with discone antenna and rectifier with high impedance inductor," 2021 5th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), 1-6, IEEE, August 2021. Google Scholar
27. Jung, E. M., W. S. Lee, R. J. Vyas, and M. M. Tentzeris, "A wideband, quasi-isotropic, ambient RF energy harvester combining UHF-TV and FM," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1854-1858, 2021.
doi:10.1109/LAWP.2021.3095102 Google Scholar
28. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
29. Wang, C. J. and Y. L. Lee, "A compact dipole antenna for DTV applications by utilizing L-shaped stub and coupling strip," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6515-6519, 2014.
doi:10.1109/TAP.2014.2360554 Google Scholar
30. Komsing, S., N. Fhafhiem, A. Innok, and A. Ruengwaree, "Design of wide-band dipole antenna for digital TV broadcasting application," 2018 International Electrical Engineering Congress (iEECON), 1-4, IEEE, March 2018. Google Scholar
31. Wang, L., K. W. Chen, Q. Huang, W. H. Shao, W. X. Fang, G. G. Lu, and Y. F. En, "Wideband circularly polarized cross-dipole antenna with folded ground plane," IET Microwaves, Antennas & Propagation, Vol. 15, No. 5, 451-456, 2021.
doi:10.1049/mia2.12077 Google Scholar
32. Wen, L., S. Gao, B. Sanz-Izquierdo, C. Wang, W. Hu, X. Ren, and J. Wu, "Compact and wideband crossed dipole antenna using coupling stub for circular polarization," IEEE Transactions on Antennas and Propagation, 2021. Google Scholar
33. Li, D. Y., Y. C. Jiao, H. W. Yu, and Z. B. Weng, "Wideband circularly polarized pyramidal horn antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, 2020. Google Scholar
34. Bayarsaikhan, P., R. Kuse, T. Fukusako, K. Tomimoto, M. Miyashita, and R. Yamaguchi, "Multi-port rectangular horn antenna with dielectric resonator for 5G application," 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-2, IEEE, November 2021. Google Scholar
35. Ishchenko, E. A., Y. G. Pasternak, V. A. Pendyurin, E. A. Rogozin, and S. M. Fedorov, "Horn antenna with integrated metamaterial for beam steering," Journal of Physics: Conference Series, Vol. 1902, No. 1, 012068, IOP Publishing, May 2021.
doi:10.1088/1742-6596/1902/1/012068 Google Scholar
36. Fathi, E., F. Setoudeh, and M. B. Tavakoli, "Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter," ETRI Journal, 2022. Google Scholar
37. Manh, L. D., V. P. Hoang, and X. N. Tran, "A cost-effective 5-W GaN HEMT power amplifier for sub-6-GHz 5G wireless communications," Mobile Networks and Applications, 1-11, 2022. Google Scholar
38. Erkmen, F., T. S. Almoneef, and O. M. Ramahi, "Scalable electromagnetic energy harvesting using frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 6, No. 5, 2433-2441, 2018.
doi:10.1109/TMTT.2018.2804956 Google Scholar
39. Said, M. A. M., Z. Zakaria, M. N. Husain, M. H. Misran, and F. S. M. Noor, "2.45 GHz rectenna with high gain for RF energy harvesting," Telkomnika, Vol. 17, No. 1, 384-391, 2019.
doi:10.12928/telkomnika.v17i1.11592 Google Scholar
40. Ard-Paru, N., Managing Spectrum Commons in Thailand: Allocation and Assignment Challenges, Chalmers University of Technology, 2012.