Vol. 111
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-05
Dipole Antenna with Horn Waveguide for Energy Harvesting in DTV Systems
By
Progress In Electromagnetics Research M, Vol. 111, 145-157, 2022
Abstract
This article presents a dipole antenna using an I-shapes adding technique on both sides of the antenna's body. To increase the using frequency range to be wider, with horn waveguide for gain enhancement and harvest energy by matching circuit. Which is compatible with the voltage multiplier circuit at RF frequency (510-790 MHz) in a TV digital system. When taken to measure the effect of the antenna, it was found that the antenna operates at a frequency range of 60.24% (450-838 MHz), a 67.79% increase from the base dipole antenna, which has the gain enhancement of 10.23 dB from adding the horn waveguide 60.99%. By has a pattern of energy radiating in a specific direction, and when the antenna is used with an energy harvesting circuit to get energy or power from the front direction of the TV digital antenna at a distance of 10 km, capable of harvesting energy up to 7.33 uW.
Citation
Watcharaphon Naktong, and Natchayathorn Wattikornsirikul, "Dipole Antenna with Horn Waveguide for Energy Harvesting in DTV Systems," Progress In Electromagnetics Research M, Vol. 111, 145-157, 2022.
doi:10.2528/PIERM22040101
References

1. Yang, Y., S. Bremner, C. Menictas, and M. Kay, "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Vol. 91, 109-125, 2018.
doi:10.1016/j.rser.2018.03.047

2. Oh, T. H., M. Hasanuzzaman, J. Selvaraj, S. C. Teo, and S. C. Chua, "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth --- An update," Renewable and Sustainable Energy Reviews, Vol. 81, 3021-3031, 2018.
doi:10.1016/j.rser.2017.06.112

3. Sherwood, J., "The significance of biomass in a circular economy," Bioresource Technology, Vol. 300, 122755, 2020.
doi:10.1016/j.biortech.2020.122755

4. Karnauskas, K. B., J. K. Lundquist, and L. Zhang, "Southward shift of the global wind energy resource under high carbon dioxide emissions," Nature Geoscience, Vol. 11, No. 1, 38-43, 2018.
doi:10.1038/s41561-017-0029-9

5. Kumar, K. R., N. K. Chaitanya, and N. S. Kumar, "Solar thermal energy technologies and its applications for process heating and power generation --- A review," Journal of Cleaner Production, Vol. 282, 125296, 2021.
doi:10.1016/j.jclepro.2020.125296

6. Kim, S., R. Vyas, J. Bito, K. Niotaki, A. Collado, A. Georgiadis, and M. M. Tentzeris, "Ambient RF energy-harvesting technologies for self-sustainable standalone wireless sensor platforms," Proceedings of the IEEE, Vol. 102, No. 11, 1649-1666, 2014.
doi:10.1109/JPROC.2014.2357031

7. Song, C., Y. Huang, P. Carter, J. Zhou, S. Yuan, Q. Xu, and M. Kod, "A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 7, 3160-3171, 2016.
doi:10.1109/TAP.2016.2565697

8. Saeed, W., N. Shoaib, H. M. Cheema, and M. U. Khan, "RF energy harvesting for ubiquitous, zero power wireless sensors," International Journal of Antennas and Propagation, Vol. 2018, 2018.

9. Shen, S., C. Y. Chiu, and R. D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 644-656, 2017.
doi:10.1109/TAP.2017.2786320

10. Wagih, M., A. S. Weddell, and S. Beeby, "Rectennas for radio-frequency energy harvesting and wireless power transfer: A review of antenna design [antenna applications corner]," IEEE Antennas and Propagation Magazine, Vol. 62, No. 5, 95-107, 2020.
doi:10.1109/MAP.2020.3012872

11. Chandrasekaran, K. T., K. Agarwal, A. Alphones, R. Mittra, and M. F. Karim, "Compact dual-band metamaterial-based high-efficiency rectenna: An application for ambient electromagnetic energy harvesting," IEEE Antennas and Propagation Magazine, Vol. 62, No. 3, 18-29, 2020.
doi:10.1109/MAP.2020.2982091

12. Joseph, S. D., Y. Huang, and S. S. Hsu, "Transmission lines-based impedance matching technique for broadband rectifier," IEEE Access, Vol. 9, 4665-4672, 2020.

13. Gu, X., P. Burasa, S. Hemour, and K. Wu, "Recycling ambient RF energy: Far-field wireless power transfer and harmonic backscattering," IEEE Microwave Magazine, Vol. 22, No. 9, 60-78, 2021.
doi:10.1109/MMM.2021.3086335

14. Erkmen, F. and O. M. Ramahi, "A scalable, dual-polarized absorber surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 69, No. 9, 4021-4028, 2021.
doi:10.1109/TMTT.2021.3087622

15. Bougas, I. D., M. S. Papadopoulou, A. D. Boursianis, K. Kokkinidis, and S. K. Goudos, "State-of-the-art techniques in RF energy harvesting circuits," Telecom, Vol. 2, No. 4, 369-389, Multidisciplinary Digital Publishing Institute, December 2021.
doi:10.3390/telecom2040022

16. Furuta, T., M. Ito, N. Nambo, K. Itoh, K. Noguchi, and J. Ida, "The 500 MHz band low power rectenna for DTV in the Tokyo area," 2016 IEEE Wireless Power Transfer Conference (WPTC), 1-3, IEEE, May 2016.

17. Dhiman, L. and S. Singh, "Design and optimization of DGS based T-stub microstrip patch antenna for wireless applications," Advancements in Engineering and Technology, 631, 2015.

18. Song, C., Y. Huang, J. Zhou, and P. Carter, "Improved ultrawideband rectennas using hybrid resistance compression technique," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2057-2062, 2017.
doi:10.1109/TAP.2017.2670359

19. Palazzi, V., J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, and M. M. Tentzeris, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2017.
doi:10.1109/TMTT.2017.2721399

20. Zheng, S., W. Liu, and Y. Pan, "Design of an ultra-wideband high-efficiency rectifier for wireless power transmission and harvesting applications," IEEE Transactions on Industrial Informatics, Vol. 15, No. 6, 3334-3342, 2018.
doi:10.1109/TII.2018.2874460

21. Loubet, G., A. Takacs, and D. Dragomirescu, "Implementation of a battery-free wireless sensor for cyber-physical systems dedicated to structural health monitoring applications," IEEE Access, Vol. 7, 24679-24690, 2019.
doi:10.1109/ACCESS.2019.2900161

22. Okba, A., A. Takacs, and H. Aubert, "Compact rectennas for ultra-low-power wirelss transmission applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 5, 1697-1707, 2019.
doi:10.1109/TMTT.2019.2902552

23. Loubet, G., A. Takacs, E. Gardner, A. De Luca, F. Udrea, and D. Dragomirescu, "LoRaWAN battery-free wireless sensors network designed for structural health monitoring in the construction domain," Sensors, Vol. 19, No. 7, 1510, 2019.
doi:10.3390/s19071510

24. Tampouratzis, M. G., D. Vouyioukas, D. Stratakis, and T. Yioultsis, "Use ultra-wideband discone rectenna for broadband RF energy harvesting applications," Technologies, Vol. 8, No. 2, 21, 2020.
doi:10.3390/technologies8020021

25. Wagih, M., A. S. Weddell, and S. Beeby, "Meshed high-impedance matching network-free rectenna optimized for additive manufacturing," IEEE Open Journal of Antennas and Propagation, Vol. 1, 615-626, 2020.
doi:10.1109/OJAP.2020.3038001

26. Chuma, E. L., Y. Iano, and L. L. B. Roger, "Ultra-wide band rectenna design with discone antenna and rectifier with high impedance inductor," 2021 5th International Symposium on Instrumentation Systems, Circuits and Transducers (INSCIT), 1-6, IEEE, August 2021.

27. Jung, E. M., W. S. Lee, R. J. Vyas, and M. M. Tentzeris, "A wideband, quasi-isotropic, ambient RF energy harvester combining UHF-TV and FM," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1854-1858, 2021.
doi:10.1109/LAWP.2021.3095102

28. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.

29. Wang, C. J. and Y. L. Lee, "A compact dipole antenna for DTV applications by utilizing L-shaped stub and coupling strip," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 12, 6515-6519, 2014.
doi:10.1109/TAP.2014.2360554

30. Komsing, S., N. Fhafhiem, A. Innok, and A. Ruengwaree, "Design of wide-band dipole antenna for digital TV broadcasting application," 2018 International Electrical Engineering Congress (iEECON), 1-4, IEEE, March 2018.

31. Wang, L., K. W. Chen, Q. Huang, W. H. Shao, W. X. Fang, G. G. Lu, and Y. F. En, "Wideband circularly polarized cross-dipole antenna with folded ground plane," IET Microwaves, Antennas & Propagation, Vol. 15, No. 5, 451-456, 2021.
doi:10.1049/mia2.12077

32. Wen, L., S. Gao, B. Sanz-Izquierdo, C. Wang, W. Hu, X. Ren, and J. Wu, "Compact and wideband crossed dipole antenna using coupling stub for circular polarization," IEEE Transactions on Antennas and Propagation, 2021.

33. Li, D. Y., Y. C. Jiao, H. W. Yu, and Z. B. Weng, "Wideband circularly polarized pyramidal horn antenna based on spoof surface plasmon polaritons," IEEE Transactions on Antennas and Propagation, 2020.

34. Bayarsaikhan, P., R. Kuse, T. Fukusako, K. Tomimoto, M. Miyashita, and R. Yamaguchi, "Multi-port rectangular horn antenna with dielectric resonator for 5G application," 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-2, IEEE, November 2021.

35. Ishchenko, E. A., Y. G. Pasternak, V. A. Pendyurin, E. A. Rogozin, and S. M. Fedorov, "Horn antenna with integrated metamaterial for beam steering," Journal of Physics: Conference Series, Vol. 1902, No. 1, 012068, IOP Publishing, May 2021.
doi:10.1088/1742-6596/1902/1/012068

36. Fathi, E., F. Setoudeh, and M. B. Tavakoli, "Design and fabrication of a novel multilayer bandpass filter with high-order harmonics suppression using parallel coupled microstrip filter," ETRI Journal, 2022.

37. Manh, L. D., V. P. Hoang, and X. N. Tran, "A cost-effective 5-W GaN HEMT power amplifier for sub-6-GHz 5G wireless communications," Mobile Networks and Applications, 1-11, 2022.

38. Erkmen, F., T. S. Almoneef, and O. M. Ramahi, "Scalable electromagnetic energy harvesting using frequency-selective surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 6, No. 5, 2433-2441, 2018.
doi:10.1109/TMTT.2018.2804956

39. Said, M. A. M., Z. Zakaria, M. N. Husain, M. H. Misran, and F. S. M. Noor, "2.45 GHz rectenna with high gain for RF energy harvesting," Telkomnika, Vol. 17, No. 1, 384-391, 2019.
doi:10.12928/telkomnika.v17i1.11592

40. Ard-Paru, N., Managing Spectrum Commons in Thailand: Allocation and Assignment Challenges, Chalmers University of Technology, 2012.