1. Twersky, V., "On scattering of waves by the infinite grating of circular cylinders," I.R.E. Transactions on Antennas and Propagation, Vol. 10, No. 6, 737-765, 1962.
doi:10.1109/TAP.1962.1137940 Google Scholar
2. Krenn, J. R., B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, et al. "Non diffraction-limited light transport by gold nanowires," Europhysics Letters, Vol. 60, No. 5, 663-669, 2002.
doi:10.1209/epl/i2002-00360-9 Google Scholar
3. Zhang, D. and J. Zhu, "Bi-directional propagation leaky modes in a periodic chain of dielectric circular rods," Optics Express, Vol. 26, No. 7, 8690-8698, 2018.
doi:10.1364/OE.26.008690 Google Scholar
4. Poushimin, R. and T. Jalali, "Radiation losses in photonic crystal slab waveguide to enhance LEDs efficiency," Superlattices and Microstructures, Vol. 122, 426-433, 2018.
doi:10.1016/j.spmi.2018.05.010 Google Scholar
5. Zhang, D., V. Jandieri, and K. Yasumoto, "Modal analysis of wave guidance by a periodic chain of circular rods," 2016 Progress In Electromagnetics Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016. Google Scholar
6. Benisty, H., "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," Journal of Applied Physics, Vol. 79, No. 10, 7483-7492, 1996.
doi:10.1063/1.362419 Google Scholar
7. Yasumoto, K., H. Jia, and K. Sun, "Rigorous modal analysis of two-dimensional photonic crystal waveguides," Radio Science, Vol. 40, No. 6, 2005.
doi:10.1029/2004RS003192 Google Scholar
8. Xu, Y., R. K. Lee, and A. Yariv, "Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry," Optics Letters, Vol. 25, No. 10, 755-757, 2000.
doi:10.1364/OL.25.000755 Google Scholar
9. Happ, T. D., M. Kamp, and A. Forchel, "Photonic crystal tapers for ultracompact mode conversion," Optics Letters, Vol. 26, No. 14, 1102-1104, 2001.
doi:10.1364/OL.26.001102 Google Scholar
10. Talneau, A., P. Lalanne, M. Agio, and C. M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Optics Letters, Vol. 27, No. 17, 1522-1524, 2002.
doi:10.1364/OL.27.001522 Google Scholar
11. Zong, C., D. Zhang, Z. Ding, and Y. Liu, "Mixed propagation modes in three bragg propagation periods of variable chain structures," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 311-318, 2020.
doi:10.1109/TAP.2019.2938710 Google Scholar
12. Zong, C. and D. Zhang, "Analysis of propagation characteristics along an array of silver nanorods using dielectric constants from experimental data and the Drude-Lorentz model," Electronics, Vol. 8, No. 11, 2019.
doi:10.3390/electronics8111280 Google Scholar
13. Klimonsky, S., A. Baranchikov, V. N. Lad, E. Eremina, A. Garshev, et al. "Photonic and plasmonic effects in inverse opal films with Au nanoparticles," Photonics and Nanostructures-Fundamentals and Applications, Vol. 43, 2021. Google Scholar
14. Mu, Y., H. Liu, H. Li, J. Han, C. Huang, et al. "Sensing characteristics of the Gold-Silver alloy nanoparticles assembled waveguided metallic photonic crystals," Rare Metal Materials and Engineering, Vol. 48, No. 9, 2879-2884, 2019. Google Scholar
15. Yasli, A. and H. Ademgil, "Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors," Modern Physics Letters B, Vol. 33, No. 13, 2019.
doi:10.1142/S0217984919501574 Google Scholar
16. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, No. 2, 167-170, 2012.
doi:10.1016/j.ijleo.2011.04.001 Google Scholar
17. Feng, S. and Y. Wang, "Unidirectional wavelength filtering characteristics of the two-dimensional triangular-lattice photonic crystal structures with elliptical defects," Optical Materials, Vol. 35, No. 12, 2166-2170, 2013.
doi:10.1016/j.optmat.2013.05.040 Google Scholar
18. Shi, L., F. Jin, M. Zheng, X. Dong, W. Chen, et al. "Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer," Physical Chemistry Chemical Physics, Vol. 18, No. 7, 5306-5315, 2016.
doi:10.1039/C5CP06990D Google Scholar
19. Takiguchi, M., H. Taniyama, H. Sumikura, M. D. Birowosuto, E. Kuramochi, et al. "Systematic study of thresholdless oscillation in high-buried multiple-quantum-well photonic crystal nanocavity lasers," Optics Express, Vol. 24, No. 4, 3441, 2016.
doi:10.1364/OE.24.003441 Google Scholar
20. Weng, G., Y. Mei, J. Liu, W. Hofmann, L. Ying, et al. "Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers," Optics Express, Vol. 24, No. 14, 15546-15553, 2016.
doi:10.1364/OE.24.015546 Google Scholar
21. Zhang, T., C. Zhou, W. Wang, and J. Chen, "Generation of low-threshold optofluidic lasers in a stable Fabry-Perot microcavity," Optics and Laser Technology, Vol. 91, 108-111, 2017.
doi:10.1016/j.optlastec.2016.12.017 Google Scholar
22. Rahbarihagh, Y., F. Kalhor, J. Rashed-Mohassel, and M. Shahabadi, "Modal analysis for a waveguide of nanorods using the field computation for a chain of finite length," Applied Computational Electromagnetics Society Journal, Vol. 29, No. 2, 140-148, 2014. Google Scholar
23. Rioux, D., S. Vallieres, S. Besner, P. Munoz, E. Mazur, et al. "An analytic model for the dielectric function of Au, Ag, and their alloys," Advanced Optical Materials, Vol. 2, No. 2, 176-182, 2014.
doi:10.1002/adom.201300457 Google Scholar
24. Jia, H. T., D. Zhang, and K. Yasumoto, "Fast analysis of optical waveguides using an improved fourier series method with perfectly matched layer," Microwave and Optical Technology Letters, Vol. 46, No. 3, 263-268, 2005.
doi:10.1002/mop.20961 Google Scholar
25. Zhang, D. and H. Jia, "Numerical analysis of leaky modes in two-dimensional photonic crystal waveguides using Fourier series expansion method with perfectly matched layer," IEICE Trans. Electron., Vol. 90, 613-622, 2007.
doi:10.1093/ietele/e90-c.3.613 Google Scholar
26. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937 Google Scholar
27. Wuenschell, J. and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Transactions on Nanotechnology, Vol. 7, No. 2, 229-236, 2008.
doi:10.1109/TNANO.2007.915018 Google Scholar
28. Li, L. F., "Use of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 13, No. 9, 1996.
doi:10.1364/JOSAA.13.001870 Google Scholar