Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-01
Study on the Propagation Characteristics of Gold-Silver Hybrid Chain Nanostructures
By
Progress In Electromagnetics Research M, Vol. 111, 119-131, 2022
Abstract
In this paper, the transport characteristics of gold/silver mixed chain nanostructures with different proportions of infinite length in the range of 270-810 nm are studied, and the corresponding band gap characteristics and other transport characteristics are analyzed. We introduced an analytical model to determine the complex dielectric constant of an arbitrary composition Au-Ag alloy, and combined this with the experimental data to study the propagation characteristics of the infinite-length gold-silver mixed-chain nanostructures with various compositions. As the gold content exceeds Au:Ag(1:2), the coupling coefficient between the forward and reverse waves becomes smaller, and the reverse wave cannot provide enough energy to transfer to the forward wave. The scattering ability of the scattering unit weakens, the frequency range of the propagation state widens, and it exhibits good propagation characteristics. By gradually increasing the proportion of metal in the alloy, we can explore the variation of the propagation characteristics of the alloy. At present, the change of metal propagation characteristics has not been studied from this point at home and abroad, so we found for the first time that frequency modulation can be realized through this method (regulating the attenuation or cutoff frequency range, namely the band gap range). We also studied a cylindrical finite array chain composed of 40 nanorods under five types of experimental data and discussed the wave guiding ability of the finite array chain under the excitation of a plane wave of a specific wavelength.
Citation
Shenxiang Yang Dan Zhang Huiwen Chen Shuo Wang Chun-Ping Chen , "Study on the Propagation Characteristics of Gold-Silver Hybrid Chain Nanostructures," Progress In Electromagnetics Research M, Vol. 111, 119-131, 2022.
doi:10.2528/PIERM22040107
http://www.jpier.org/PIERM/pier.php?paper=22040107
References

1. Twersky, V., "On scattering of waves by the infinite grating of circular cylinders," I.R.E. Transactions on Antennas and Propagation, Vol. 10, No. 6, 737-765, 1962.
doi:10.1109/TAP.1962.1137940

2. Krenn, J. R., et al., "Non diffraction-limited light transport by gold nanowires," Europhysics Letters, Vol. 60, No. 5, 663-669, 2002.
doi:10.1209/epl/i2002-00360-9

3. Zhang, D. and J. Zhu, "Bi-directional propagation leaky modes in a periodic chain of dielectric circular rods," Optics Express, Vol. 26, No. 7, 8690-8698, 2018.
doi:10.1364/OE.26.008690

4. Poushimin, R. and T. Jalali, "Radiation losses in photonic crystal slab waveguide to enhance LEDs efficiency," Superlattices and Microstructures, Vol. 122, 426-433, 2018.
doi:10.1016/j.spmi.2018.05.010

5. Zhang, D., V. Jandieri, and K. Yasumoto, "Modal analysis of wave guidance by a periodic chain of circular rods," 2016 Progress In Electromagnetics Research Symposium (PIERS), Shanghai, China, Aug. 8-11, 2016.

6. Benisty, H., "Modal analysis of optical guides with two-dimensional photonic band-gap boundaries," Journal of Applied Physics, Vol. 79, No. 10, 7483-7492, 1996.
doi:10.1063/1.362419

7. Yasumoto, K., H. Jia, and K. Sun, "Rigorous modal analysis of two-dimensional photonic crystal waveguides," Radio Science, Vol. 40, No. 6, 2005.
doi:10.1029/2004RS003192

8. Xu, Y., R. K. Lee, and A. Yariv, "Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry," Optics Letters, Vol. 25, No. 10, 755-757, 2000.
doi:10.1364/OL.25.000755

9. Happ, T. D., M. Kamp, and A. Forchel, "Photonic crystal tapers for ultracompact mode conversion," Optics Letters, Vol. 26, No. 14, 1102-1104, 2001.
doi:10.1364/OL.26.001102

10. Talneau, A., P. Lalanne, M. Agio, and C. M. Soukoulis, "Low-reflection photonic-crystal taper for efficient coupling between guide sections of arbitrary widths," Optics Letters, Vol. 27, No. 17, 1522-1524, 2002.
doi:10.1364/OL.27.001522

11. Zong, C., D. Zhang, Z. Ding, and Y. Liu, "Mixed propagation modes in three bragg propagation periods of variable chain structures," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 311-318, 2020.
doi:10.1109/TAP.2019.2938710

12. Zong, C. and D. Zhang, "Analysis of propagation characteristics along an array of silver nanorods using dielectric constants from experimental data and the Drude-Lorentz model," Electronics, Vol. 8, No. 11, 2019.
doi:10.3390/electronics8111280

13. Klimonsky, S., et al., "Photonic and plasmonic effects in inverse opal films with Au nanoparticles," Photonics and Nanostructures-Fundamentals and Applications, Vol. 43, 2021.

14. Mu, Y., et al., "Sensing characteristics of the Gold-Silver alloy nanoparticles assembled waveguided metallic photonic crystals," Rare Metal Materials and Engineering, Vol. 48, No. 9, 2879-2884, 2019.

15. Yasli, A. and H. Ademgil, "Effect of plasmonic materials on photonic crystal fiber based surface plasmon resonance sensors," Modern Physics Letters B, Vol. 33, No. 13, 2019.
doi:10.1142/S0217984919501574

16. Djavid, M. and M. S. Abrishamian, "Multi-channel drop filters using photonic crystal ring resonators," Optik, Vol. 123, No. 2, 167-170, 2012.
doi:10.1016/j.ijleo.2011.04.001

17. Feng, S. and Y. Wang, "Unidirectional wavelength filtering characteristics of the two-dimensional triangular-lattice photonic crystal structures with elliptical defects," Optical Materials, Vol. 35, No. 12, 2166-2170, 2013.
doi:10.1016/j.optmat.2013.05.040

18. Shi, L., et al., "Low threshold photonic crystal laser based on a Rhodamine dye doped high gain polymer," Physical Chemistry Chemical Physics, Vol. 18, No. 7, 5306-5315, 2016.
doi:10.1039/C5CP06990D

19. Takiguchi, M., et al., "Systematic study of thresholdless oscillation in high-buried multiple-quantum-well photonic crystal nanocavity lasers," Optics Express, Vol. 24, No. 4, 3441, 2016.
doi:10.1364/OE.24.003441

20. Weng, G., et al., "Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers," Optics Express, Vol. 24, No. 14, 15546-15553, 2016.
doi:10.1364/OE.24.015546

21. Zhang, T., C. Zhou, W. Wang, and J. Chen, "Generation of low-threshold optofluidic lasers in a stable Fabry-Perot microcavity," Optics and Laser Technology, Vol. 91, 108-111, 2017.
doi:10.1016/j.optlastec.2016.12.017

22. Rahbarihagh, Y., F. Kalhor, J. Rashed-Mohassel, and M. Shahabadi, "Modal analysis for a waveguide of nanorods using the field computation for a chain of finite length," Applied Computational Electromagnetics Society Journal, Vol. 29, No. 2, 140-148, 2014.

23. Rioux, D., et al., "An analytic model for the dielectric function of Au, Ag, and their alloys," Advanced Optical Materials, Vol. 2, No. 2, 176-182, 2014.
doi:10.1002/adom.201300457

24. Jia, H. T., D. Zhang, and K. Yasumoto, "Fast analysis of optical waveguides using an improved fourier series method with perfectly matched layer," Microwave and Optical Technology Letters, Vol. 46, No. 3, 263-268, 2005.
doi:10.1002/mop.20961

25. Zhang, D. and H. Jia, "Numerical analysis of leaky modes in two-dimensional photonic crystal waveguides using Fourier series expansion method with perfectly matched layer," IEICE Trans. Electron., Vol. 90, 613-622, 2007.
doi:10.1093/ietele/e90-c.3.613

26. Barnes, W. L., A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, No. 6950, 824-830, 2003.
doi:10.1038/nature01937

27. Wuenschell, J. and H. K. Kim, "Excitation and propagation of surface plasmons in a metallic nanoslit structure," IEEE Transactions on Nanotechnology, Vol. 7, No. 2, 229-236, 2008.
doi:10.1109/TNANO.2007.915018

28. Li, L. F., "Use of Fourier series in the analysis of discontinuous periodic structures," Journal of the Optical Society of America A --- Optics Image Science and Vision, Vol. 13, No. 9, 1996.
doi:10.1364/JOSAA.13.001870