Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-07-13
Pattern Reconfigurable End-Fire Antenna Array with High Directivity
By
Progress In Electromagnetics Research M, Vol. 111, 185-197, 2022
Abstract
This paper presents a highly directive pattern reconfigurable antenna array capable of switching single or multiple beams of high directivity in multiple directions. Each element is individually capable of providing radiation pattern of directivity 12 dB and realized gain of 10.2 dB. Here, eight directive array elements are arranged in a circular fashion resembling a fan along with a switching arrangement to obtain beam switching in the horizontal plane. Two or more elements can be excited simultaneously to obtain patterns in multiple directions. In another configuration, the elements are arranged around a cylindrical support resembling an umbrella structure to obtain azimuthal switching at a desired tilt. The ability to reconfigure patterns in desired direction facilitates their usage as base station antennas providing desired angular coverage to intended users only, resulting in least signal interference.
Citation
Sruthi Dinesh Chaluvayalil Vinisha Deepti Das Krishna Jean Marc Laheurte Chandroth Aanandan , "Pattern Reconfigurable End-Fire Antenna Array with High Directivity," Progress In Electromagnetics Research M, Vol. 111, 185-197, 2022.
doi:10.2528/PIERM22041803
http://www.jpier.org/PIERM/pier.php?paper=22041803
References

1. Siachalou, E., E. Vafiadis, S. S. Goudos, T. Samaras, C. S. Koukourlis, and S. Panas, "On the design of switched-beam wideband base stations," IEEE Antennas and Propagation Magazine, Vol. 46, No. 1, 158-167, 2004.
doi:10.1109/MAP.2004.1296180

2. Kim, D.-S., D.-H. Hong, H.-S. Kwon, and J.-M. Yang, "A design of switch array antenna with performance improvement for 77 GHz automotive FMCW radar," Progress In Electromagnetics Research B, Vol. 66, 107-121, 2016.
doi:10.2528/PIERB16010401

3. Sudhakar Rao, K., G. A. Morin, M. Q. Tang, S. Richard, and K. K. Chan, "Development of a 45 GHz multiple-beam antenna for military satellite communications," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 10, 1036-1047, Oct. 1995.
doi:10.1109/8.467639

4. Basari, et al., "Simple switched-beam antenna system for mobile satellite applications," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, San Diego, CA, 2008.

5. Harrington, R. F., "Reactively controlled directive arrays," IEEE Transactions on Antennas and Propagation, Vol. 26, No. 3, 390-395, 1978.
doi:10.1109/TAP.1978.1141852

6. Preston, S. L., D. V. Thiel, J. W. Lu, S. G. O'Keefe, and T. S. Bird, "Electronic beam steering using switched parasitic patch elements," Electronics Letters, Vol. 33, No. 1, 7-8, Jan. 1997.
doi:10.1049/el:19970048

7. Zhang, S., G. H. Huff, J. Feng, and J. T. Bernhard, "A pattern reconfigurable microstrip parasitic array," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 10, 2773-2776, 2004.
doi:10.1109/TAP.2004.834372

8. Rohani, B., Y. Shun, and H. Arai, "Analysis of super-directive array with switchable beam pattern," Asia-Pacific Microwave Conference, 173-175, Malaysia, Nov. 2017.

9. Clarricoats, P. J. B., H. Zhou, and A. Monk, "Electrically controlled reconfigurable reflector antenna," Antennas and Propagation Society Symposium, 1991 Digest, Vol. 1, 179-181, Ontario, Canada, 1991.

10. Sarkar, T. K., R. Mailloux, A. A. Oliner, M. Salazar-Palma, and D. L. Sengupta, "A history of phased array antennas," History of Wireless, 567-603, John Wiley & Sons, IEEE, 2006.

11. Hansen, R. C., Phased Array Antennas, 2nd Ed., John Wiley & Sons, 2009.
doi:10.1002/9780470529188

12. Thiel, D. V. and S. Smith, Switched Parasitic Antennas for Cellular Communications, Artech House, Norwood, MA, USA, 2002.

13. Bernhard, J. T., Reconfigurable Antennas: Synthesis Lectures on Antennas, Morgan and Claypool Publisher, 2007.
doi:10.1007/978-3-031-01535-9

14. Balanis, C. A., Antenna Theory: Analysis and Design, 3rd Ed., Chapter 6, 297-317, 2005, 2005.

15. Kamarudin, M. R. and P. S. Hall, "Switched beam antenna array with parasitic elements," Progress In Electromagnetics Research B, Vol. 13, 187-201, 2009.
doi:10.2528/PIERB09011603

16. Catarinucci, L., S. Guglielmi, R. Colella, and L. Tarricone, "Compact switched-beam antennas enabling novel power-efficient wireless sensor networks," IEEE Sensors Journal, Vol. 14, No. 9, 3252-3259, Sept. 2014.
doi:10.1109/JSEN.2014.2326971

17. Ren, J., X. Yang, J. Yin, and Y. Yin, "A novel antenna with reconfigurable patterns using H-shaped structures," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 915-918, Dec. 2015.
doi:10.1109/LAWP.2014.2387292

18. Jin, G., M. Li, D. Liu, and G. Zeng, "A simple planar pattern-reconfigurable antenna based on arc dipoles," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 9, 1664-1668, Sept. 2018.
doi:10.1109/LAWP.2018.2862624

19. Dihissou, A., A. Diallo, P. Le Thuc, and R. Staraj, "Directive and reconfigurable loaded antenna array for wireless sensor networks," Progress In Electromagnetics Research C, Vol. 84, 103-117, 2018.
doi:10.2528/PIERC18032403

20. Chen, S., P. Qin, W. Lin, and Y. J. Guo, "Pattern reconfigurable antenna with five switchable beams in elevation plane," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 454-457, Mar. 2018.
doi:10.1109/LAWP.2018.2794990

21. Batel, L., A. Clemente, and C. Delaveaud, "Superdirective and compact electronically-beam-switchable antenna for smart communication objects," 2019 13th European Conference on Antennas and Propagation (EuCAP), 1-4, Krakow, Poland, 2019.

22. Dinesh, S., C. Vinisha, D. D. Krishna, J. M. Laheurte, and C. Aanandan, "Highly directive planar end-fire antenna array," Progress In Electromagnetic Research C, Vol. 106, 45-59, 2020.
doi:10.2528/PIERC20080802