1. Wang, Y. D., F. Y. Han, J. Zhao, Z. W. Zhang, D. Wang, Y. H. Tan, and P. K. Liu, "Design of double-layer electrically extremely small-size displacement sensor," Sensors, Vol. 21, 4923, 2021.
doi:10.3390/s21144923 Google Scholar
2. Huang, J., J. Li, G. Xu, and Z. Wei, "A microfluidic sensor based on meta-surface absorber for rapidand nondestructive identification of edible oil species," Progress In Electromagnetics Research C, Vol. 96, 153-163, 2019.
doi:10.2528/PIERC19081601 Google Scholar
3. Al-Duhni, G. and N. Wongkasem, "Metal discovery by highly sensitive microwave multi-band metamaterial-inspired sensors," Progress In Electromagnetics Research B, Vol. 93, 1-22, 2021.
doi:10.2528/PIERB21051606 Google Scholar
4. Bait-Suwailam, M. M., "Numerical assessment of red palm weevil detection mechanism in palm trees using CSRR microwave sensors," Progress In Electromagnetics Research Letters, Vol. 100, 63-71, 2021.
doi:10.2528/PIERL21080303 Google Scholar
5. Teng, C., C. H. Chio, K. W. Tam, and P. Y. Lau, "An angular displacement microwave sensor with 360◦ dynamic range using multi-mode resonator," IEEE Sensors Journal, Vol. 21, No. 3, 2899-2907, February 1, 2021. Google Scholar
6. Naqui, J., M. Durán-Sindreu, and F. Martín, "Novel sensors based the symmetry properties of Split Ring Resonators (SRRs)," Sensors, Vol. 11, 7545-7553, 2011.
doi:10.3390/s110807545 Google Scholar
7. Naqui, J., M. Durán-Sindreu, and F. Martín, "Alignment and position sensors based on split ring resonators," Sensors, Vol. 12, 11790-11797, 2012.
doi:10.3390/s120911790 Google Scholar
8. Rezaee, M. and M. Joodaki, "Two-dimensional displacement sensor based on CPW line loaded by Defected Ground Structure (DGS) with two separated transmission zeroes," IEEE Sensors Journal, Vol. 17, No. 4, 994-999, February 15, 2017.
doi:10.1109/JSEN.2016.2638859 Google Scholar
9. Saadat-Safa, M., V. Nayyeri, M. Khanjarian, M. Soleimani, and O. M. Ramahi, "A CSRR-based sensor for full characterization of magneto-dielectric materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 2, 806-814, February 2019.
doi:10.1109/TMTT.2018.2882826 Google Scholar
10. Soltan, A., R. A. Sadeghzadeh, and S. Mohammad-Ali-Nezhad, "Angular displacement sensor based on Corrugated Substrate Integrated Waveguide (CSIW)," IETE Journal of Research, August 13, 2020. Google Scholar
11. Horestani, A. K., C. Fumeaux, D. Abbott, et al. "Displacement sensor based on diamond-shaped tapered split ring resonator," IEEE Sensors Journal, Vol. 13, No. 4, 1153-1159, April 2013.
doi:10.1109/JSEN.2012.2231065 Google Scholar
12. Salim, A., S.-H. Kim, J. Y. Park, and S. Lim, "Microfluidic biosensor based on microwave substrate-integrated waveguide cavity resonator," Journal of Sensors, 1-13, 2018.
doi:10.1155/2018/1324145 Google Scholar
13. Chen, C.-M., J. Xua, and Y. Yao, "Fabrication of miniaturized CSRR-loaded HMSIW humidity sensors with high sensitivity and ultra-low humidity hysteresis," Sensors and Actuators B: Chemical, 1100-1106, 2018.
doi:10.1016/j.snb.2017.10.057 Google Scholar
14. Soltan, A., R. A. Sadeghzadeh, and S. Mohammad-Ali-Nezhad, "High sensitivity simple structured displacement sensor using Corrugated Substrate-Integrated Waveguide (CSIW)," IET Microwaves, Antennas & Propagation, Vol. 14, 414-418, 2020.
doi:10.1049/iet-map.2019.0575 Google Scholar
15. Xi, W., W. R. Tinga, W. A. Geoffrey Voss, and B. Q. Tian, "New results for coaxial re-entrant cavity with partially dielectric filled gap," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 4, 747-753, 1992.
doi:10.1109/22.127525 Google Scholar
16. Murugkar, A., R. Panigrahi, and K. J. Vinoy, "A novel approach for high Q microwave re-entrant cavity resonator at S-band," Proceedings of the Asia-Pacific Microwave Conference, 1-4, December 2016. Google Scholar
17. Asua, E., V. Etxebarria, and J. Feutchwanger, "High-precision displacement sensor based on resonant cavities through an electronic interface based on Arduino," Sensors and Actuators A: Physical, 296-301, 2019.
doi:10.1016/j.sna.2019.05.030 Google Scholar
18. Saeedi, S., J. Lee, H. H. Sigmarsson, and , "Tunable, high-Q, substrate-integrated, evanescent- mode cavity bandpass-bandstop filter cascade," IEEE Microwave and Wireless Components Letters, Vol. 26, No. 4, 240-242, April 2016.
doi:10.1109/LMWC.2016.2537744 Google Scholar
19. Chen, Y., J. Huang, Y. Xiang, L. Fu, W. Gu, and Y. Wu, "A modified SIW re-entrant microfluidic microwave sensor for characterizing complex permittivity of liquids," IEEE Sensors Journal, Vol. 21, No. 13, 14838-14846, July 1, 2021.
doi:10.1109/JSEN.2021.3074169 Google Scholar
20. Wei, Z., J. Huang, J. Li, G. Xu, Z. Ju, X. Liu, and X. Ni, "A high-sensitivity microfluidic sensor based on a substrate integrated waveguide re-entrant cavity for complex permittivity measurement of liquids," Sensors, Vol. 18, 4005, 2018.
doi:10.3390/s18114005 Google Scholar
21. Bansiwal, A., S. Raina, K. J. Vinoy, and S. K. Datta, "Calculation of equivalent circuit parameters of a rectangular reentrant cavity for klystron," International Journal of Microwave and Optical Technology, Vol. 13, No. 6, 487-492, November 2018. Google Scholar
22. Abdelfattah, M., D. Peroulis, and , "High-Q tunable evanescent-mode cavity SIW resonators and filters with contactless tuners," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3661-3672, September 2019.
doi:10.1109/TMTT.2019.2925092 Google Scholar
23. Pozar, D. M., Microwave Engineering, 3rd Ed., Wiley, Hoboken, NJ, USA, 2005.
24. Varshney, P. K. and M. Jaleel Akhtar, "Permittivity estimation of dielectric substrate materials via enhanced SIW sensor," IEEE Sensors Journal, Vol. 21, No. 10, 12104-12112, May 15, 2021.
doi:10.1109/JSEN.2021.3064923 Google Scholar
25. Zarifi, M. H. and M. Daneshmand, "Monitoring solid particle deposition in lossy medium using planar resonator sensor," IEEE Sensors Journal, Vol. 17, No. 23, 7981-7988, December 1, 2017.
doi:10.1109/JSEN.2017.2757027 Google Scholar
26. Abdolrazzaghi, M. and M. Daneshmand, "Multifunctional ultrahigh sensitive microwave planar sensor to monitor mechanical motion: Rotation, displacement, and stretch," Sensors, Vol. 20, 1184, 2020.
doi:10.3390/s20041184 Google Scholar