Vol. 111
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2022-06-19
High-Isolation Wide-Beam Dual-Polarized Antenna Utilizing Symmetrical Feeding
By
Progress In Electromagnetics Research M, Vol. 111, 53-63, 2022
Abstract
This paper presents a dual-polarized crossed-dipole antenna with high isolation and wide-beam radiation. The antenna comprises two orthogonal printed dipoles with single-ended and differential feeds, which are collocated on a square ground plane. The single-ended feed dipole is built on the peripheral sides of a two-layer substrate, and it is fed by a Г-shaped stripline sandwiched between the substrate layers. The differential-feed dipole is built on a single-layer substrate, i.e., the differential feed with a Π-shaped microstrip-line, and the dipole arms are printed on the top-side and back-side of the substrate, respectively. The high isolation feature is achieved by exploiting the symmetry of the design with one pair of differential feeds. The beamwidth is significantly broadened by incorporating parasitic monopole elements while keeping the design symmetrical. A realization of the design concept for the 5G NR n78 band (3.3-3.8 GHz) has been optimized, fabricated, and tested. The measured results demonstrate an impedance bandwidth of 28.6% (3.0-4.0 GHz) and port-to-port isolation of > 40 dB. Furthermore, the antenna achieves a peak half-power beamwidth of 150°/168° in the E/H planes, and a cross-polarization level of < -30 dB at the broadside direction. These features make the proposed antenna a good candidate for the 5G and in-band full-duplex applications.
Citation
Le Thi Cam Ha Son Xuat Ta Nguyen Xuan Quyen Nguyen Khac Kiem Dao-Ngoc Chien , "High-Isolation Wide-Beam Dual-Polarized Antenna Utilizing Symmetrical Feeding," Progress In Electromagnetics Research M, Vol. 111, 53-63, 2022.
doi:10.2528/PIERM22050201
http://www.jpier.org/PIERM/pier.php?paper=22050201
References

1. Sag, A., "The state of 5G in early 2021, Pt. 2,", Accessed May 02, 2022, [Online]. Available: https://www.forbes.com/sites/moorinsights/2021/03/16/the-state-of-5g-in-early-2021-pt-2/?sh=31a0a8875ad9.
doi:10.1109/JSAC.2017.2710582

2. Tonini, F., M. Fiorani, M. Furdek, C. Raffaelli, L. Wosinska, and P. Monti, "Radio and transport planning of centralized radio architectures in 5G indoor scenarios," IEEE Journal on Selected Areas in Communications, Vol. 35, No. 8, 1837-1848, Aug. 2017.
doi:10.1109/MAP.2018.2883032

3. Mirmozafari, M., G. Zhang, C. Fulton, and R. J. Doviak, "Dual-polarization antennas with high isolation and polarization purity: A review and comparison of cross-coupling mechanisms," IEEE Antennas Propagat. Mag., Vol. 61, No. 1, 50-63, Feb. 2019.
doi:10.1109/TAP.2019.2948743

4. Huang, H., X. Li, and Y. Liu, "A low-profile, single-ended and dual-polarized patch antenna for 5G application," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 5, 4048-4053, May 2020.

5. Xue, K., D. Yang, C. Guo, H. Zhai, H. Li, and Y. Zeng, "A dual-polarized filtering base-station antenna with compact size for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 8, 1316-1320, Feb. 2020.
doi:10.1109/LAWP.2019.2937201

6. Li, M., X. Chen, A. Zhang, and A. A. Kishk, "Dual-polarized broadband base station antenna backed with dielectric cavity for 5G communications," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 10, 2051-2055, Oct. 2019.
doi:10.1109/TAP.2019.2925151

7. Yang, S. J., Y. M. Pan, Y. Zhang, Y. Gao, and X. Y. Zhang, "Low-profile dual-polarized filtering magneto-electric dipole antenna for 5G applications," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 10, 6235-6243, Oct. 2019.

8. Thi Cam Ha, L., S. X. Ta, N. X. Quyen, N. K. Kiem, and D. N. Chien, "Design of compact broadband dual-polarized antenna for 5G applications," Int. J. RF Microw Comput. Aided Eng., Vol. 31, No. 5, e22615, 2021.
doi:10.1049/iet-map.2017.1093

9. Zhang, Z. Y., Y. Zhao, D. Wu, S. L. Zuo, L. Ji, X D. Yang, and G. Fu, "Dual-polarised crossed- dipole antenna with improved beamwidth," IET Microwaves, Antennas and Propagation, Vol. 12, No. 6, 890-894, 2018.
doi:10.1109/ACCESS.2019.2906882

10. Feng, B., C. Zhu, J. Cheng, C. Sim, and X.Wen, "A dual-wideband dual-polarized magneto-electric dipole antenna with dual wide beamdwidths for 5G MIMO microcell applications," IEEE Access, Vol. 7, 43346-43355, Apr. 2019.

11. Ta, S. X., C. D. Bui, and T. K. Nguyen, "Wideband quasi-Yagi antenna with broad-beam dual-polarized radiation for indoor access points," Applied Computational Electromagnetics Society Journal, Vol. 34, No. 5, 654-660, May 2019.
doi:10.1109/LAWP.2020.2979343

12. Yin, J. Y. and L. Zhang, "Design of a dual-polarized magnetoelectric dipole antenna with gain improvement at low elevation angle for a base station," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 5, 756-760, May 2020.
doi:10.1109/TAP.2020.2975269

13. He, Y. and Y. Li, "Dual-polarized microstrip antennas with capacitive via fence for wide beamwidth and high isolation," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 7, 5095-5103, Jul. 202.

14. Sabharwal, A., P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: challenges and opportunities,", Vol. 32, No. 9, 1637-1651, Sep. 2014.
doi:10.1109/JSAC.2014.2330171

15. Debaillie, B., D. Broek, C. Lavin, B. Liempd, E. Klumperink, C. Palacios, J. Craninckx, B. Nauta, and A. Parssinen, "Analog/RF solutions enabling compact full-duplex radios," IEEE Journal on Selected Areas in Communications, Vol. 32, No. 9, 1662-1673, Sep. 2014.
doi:10.1109/LAWP.2017.2786942

16. Nawaz, H. and I. Tekinn, "Double-differential-fed, dual-polarized patch antenna with 90 dB interport RF isolation for a 2.4 GHz in-band full-duplex transceiver," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 2, 287-290, Feb. 2018.

17. Lin, X.-J., Z.-M. Xie, and P.-S. Zhang, "High isolation dual-polarized patch antenna with hybrid ring feeding," International Journal of Antennas and Propagation, Vol. 2017, Vol. 2017, Article ID: 6193102, May 2017.
doi:10.1109/LAWP.2017.2684538

18. Mirmozafari, M., G. Zhang, S. Saeedi, and R. J. Doviak, "A dual linear polarization highly isolated crossed dipole antenna for MPAR application," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1879-1882, 2017.
doi:10.1109/TAP.2019.2935091

19. Feng, B., X. He, J. Cheng, Q. Zeng, and C. Sim, "A low-profile differentially fed dual-polarized antenna with high gain and isolation for 5G microcell communications," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 1, 90-99, Jan. 2020.
doi:10.1109/LAWP.2020.3047231

20. Ta, S. X., N. Nguyen-Trong, V. C. Nguyen, K. K. Nguyen, and D.-N. Chien, "Broadband dual- polarized antenna using metasurface for full-duplex applications," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 2, 254-258, Feb. 2021.

21. Edward, B. and D. Rees, "Microstrip fed printed dipole with an integrated balun,", US Patent 4 25 220, Nov. 26, 1986.

22. Zhang, Z.-Y., Y.-X. Guo, L. C. Ong, and M. Y. W. Chia, "A new wide-band planar balun on a single-layer PCB," IEEE Microw. Wireless Compon. Lett., Vol. 15, No. 6, 41-418, Jun. 2005.
doi:10.1109/TAP.2017.2765829

23. Nawaz, H. and I. Tekin, "Dual-polarized, differential fed microstrip patch antennas with very high interport isolation for full-duplex communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7355-7360, Dec. 2017.
doi:10.1109/LAWP.2021.3101423

24. Erol, L. Y., A. Uzun, M. Seyyedesfahlan, and I. Tekin, "Broadband full-duplex antenna for IEEE 802.11 protocols," IEEE Antennas and Wireless Propagation Letters, Vol. 20, No. 10, 1978-1982, Oct. 2021.